Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика включает измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), где ω0 - их циклическая частота, и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t) и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I(t) в два сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(С) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой

Технический результат – повышение точности измерений фазовых сигналов путем устранения влияния измерения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан. 3 ил.

 

Изобретение относится к области волоконной оптики и может быть использовано для измерения фазовых сигналов волоконно-оптических интерферометрических датчиков.

Интерференционный сигнал волоконно-оптического интерферометрического фазового датчика на входе фотоприемного устройства описывается следующем выражением:

где А и В - коэффициенты, пропорциональные мощности оптического излучения и амплитуде интерференционного сигнала на фотоприемнике; С - глубина вспомогательной фазовой модуляции; ω0 - циклическая частота сигнала вспомогательной фазовой модуляции; ϕ(t) - измеряемый фазовый сигнал; t - время.

При воздействии гармонического сигнала на чувствительное плечо волоконно-оптического фазового интерферометрического датчика (интерферометра), измеряемый фазовый сигнал ϕ(t) выражается формулой:

где D - амплитуда измеряемого фазового сигнала; ω - циклическая частота измеряемого фазового сигнала; ϕ0 - положение рабочей точки интерферометра.

При появлении температурных градиентов и механических напряжений происходит изменение положения рабочей точки интерферометрического датчика, в результате чего появляются гармонические искажения при измерении фазовых сигналов датчика. Для решения этой проблемы в опорное плечо датчика, устанавливается фазовый модулятор, который вносит сигнал вспомогательной фазовой модуляции в интерференционный сигнал I(t) с глубиной вспомогательной модуляции С и циклической частотой ω0. Вследствие температурных и механических воздействий на фазовый модулятор происходит дрейф значения глубины вспомогательной модуляции, что приводит к появлению искажений в измеряемом фазовом сигнале и невозможности его измерения.

Известен способ измерения фазовых сигналов с помощью волоконно-оптических интерферометрических датчиков при оптимальном значении глубины вспомогательной модуляции [статья Christian, Timothy R., Philip A. Frank, and Brian H. Houston. "Real-time analog and digital demodulator for interferometric fiber optic sensors", Smart Structures and Materials 1994: Smart Sensing, Processing, and Instrumentation. Vol. 2191. International Society for Optics and Photonics, 1994]. Способ заключается следующем: производится измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), которые с помощью синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(С) и J2(C) - функции Бесселя первого рода первого и второго порядков. При оптимальном значении глубины вспомогательной фазовой модуляции (С=2,63 радиан) из гармоник интерференционного сигнала S1(t) и S2(t) формируется измеряемый фазовый сигнал, который описывается следующей формулой:

в котором соотношение функции Бесселя первого рода первого и второго порядка равняется единице (J1(C)/J2(C)=1). При оптимальной глубине вспомогательной модуляции С=2,63 радиан значения функции Бесселя первого рода первого и второго порядка равны между собой (J1(C)=J2(C)) и формула (3) может быть упрощена и записана, как ϕ(t)=arctan[tan(ϕ(t)].

Недостатком известного способа является невозможность измерения фазовых сигналов при неоптимальной глубине вспомогательной фазовой модуляции, что приводит к гармоническим искажениям в выходном сигнале волоконно-оптического интерферометрического датчика.

Известен способ измерения фазовых сигналов волоконно-оптических интерферометрических датчиков независимо от глубины вспомогательной фазовой модуляции, выбранный в качестве прототипа [статья Не, J., Wang, L., Li, F., & Liu, Y., "An ameliorated phase generated carrier demodulation algorithm with low harmonic distortion and high stability", Journal of Lightwave Technology, 28(22), 2010]. Способ заключается в следующем: производится измерение интерференционного сигнала I(f), с помощью синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(С) и J2(C) - функции Бесселя первого рода первого и второго порядков, производится преобразование гармоник интерференционного сигнала S1(t) и S2(t) в сигнал E(t) согласно следующей формуле: E(t)=S1(t)/S2(t) и преобразование гармоник интерференционного сигнала S1(t) и S2(t) при помощи дифференцирования в пару сигналов dS1(t)/dt=-BJ1(C)sin(ϕ(t))dϕ(t)/dt и dS2(t)/dt=-BJ2(C)cos(ϕ(t))dϕ(t)/dt, где dS1(t)/dt и dS2(t)/dt - производные первой и второй гармоник интерференционного сигнала, dϕ(t)/dt - производная измеряемого фазового сигнала. Далее из гармоник интерференционного сигнала S1(t) и S2(t), и их производных dS1(t)/dt и dS2(t)/dt формируют коэффициент К по следующей формуле:

с помощью которого и сигнала E(t) формируют измеряемый фазовый сигнал, как

Недостатками известного способа являются использование только двух гармоник интерференционного сигнала S1(t) и S2(t), что ограничивает рабочий диапазон глубин вспомогательной фазовой модуляции в диапазоне от 1,5 до 3,5 радиан.

Решаемая техническая проблема - совершенствование способов измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика.

Достигаемый технический результат - повышение точности измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика.

Технический результат достигается тем, что обеспечивается увеличение точности измерений выходного фазового сигнала волоконно-оптического интерферометрического датчика путем устранения влияния изменения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан.

Поставленная задача решается следующим образом.

В способе измерения фазового сигнала волоконно-оптического интерферометрического датчика, включающем измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t), где ω0 - их циклическая частота, сформированные сигналы при помощи синхронного детектирования преобразуют измеренный интерференционный сигнал в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t), которые преобразуют измеренный интерференционный сигнал I(t) в два сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(C) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой:

Сущность заявляемого способа поясняется следующим.

Производится измерение интерференционного сигнала I(t), и формирование четырех сигналов вспомогательной фазовой модуляции cos(ω0t), cos(2ω0t), cos(3ω0t) и cos(4ω0t), которые при помощи синхронного детектирования преобразуют измеренный интерференционный сигнал в четыре сигнала S1(t)=-BJ1(C)sin(ϕ(t)), S2(t)=-BJ2(C)cos(ϕ(t)), S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)) и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой:

Сущность заявляемого способа поясняется чертежами.

На фиг. 1 представлена структурная схема устройства, осуществляющего заявляемый способ.

На фиг. 2. представлен измеряемый фазовый сигнал и его спектр, полученные с помощью заявляемого способа, где по оси X отложены значения времени в секундах, а по оси Y - значения выходного измеряемого фазового сигнала в радианах.

На фиг. 3 представлена экспериментальная зависимость амплитуды выходного фазового сигнала волоконно-оптического интерферометрического датчика от глубины вспомогательной фазовой модуляции.

Устройство содержит источник оптического излучения 1, оптическую схему 2 волоконно-оптического интерферометрического датчика, фотоприемное устройство (ФПУ) 3, аналого-цифровой преобразователь (АЦП) 4 и блок цифровой обработки сигналов (ЦОС) 5. Источник оптического излучения 1 подключен к входу оптической схемы 2. Выход оптической схемы 2 подключен к входу ФПУ 3, который детектирует оптический интерференционный сигнал на выходе оптической схемы 2 волоконно-оптического интерферометрического датчика и преобразует его в электрический сигнал. Выход ФПУ 3 подключен ко входу АЦП 4, который преобразует аналоговый электрический сигнал в цифровой сигнал. Выход АЦП 4 соединен со входом блока ЦОС 5, который реализован в виде программируемой логической интегральной схемы. Блок ЦОС 5 содержит: опорный генератор 6, блок умножителей 7, фильтр низких частот (ФНЧ) 8, блок преобразования сигналов 9, блок вычисления функции арктангенса 10. Блоки 6-10 реализованы программным способом в программируемой логической интегральной схеме. Вход блока умножителей 7 подключен к выходу АЦП 4. Другой вход блока 7 подключен к выходу опорного генератора 6, который генерирует сигналы вспомогательной фазовой модуляции. Выход блока умножителей 7 подключен ко входу ФНЧ 8, который выделяет четыре гармоники интерференционного сигнала. Выход ФНЧ 8 подключен к входу блока преобразования сигналов 9. Выход блока преобразования сигналов 9 соединен с входом блока вычисления функции арктангенса 10.

Заявляемый способ реализуется следующим образом. Источник оптического излучения 1 генерирует оптический импульс, который попадает в оптическую схему 2 волоконно-оптического интерферометрического датчика. В оптической схеме 2 происходит преобразование внешнего акустического воздействия в измеряемый фазовый сигнал ϕ(t) и формирование интерференционного оптического сигнала, содержащего зарегистрированный фазовый сигнал ϕ(t) и сигнал вспомогательной фазовой модуляции. ФПУ 3 регистрирует интерференционный оптический сигнал, описываемый выражением (1), и преобразует его в электрический аналоговый сигнал, который может быть разложен с помощью известного тригонометрического преобразования:

С помощью формулы (5) выражение (1) преобразуется к следующему виду:

АЦП 4 преобразует электрический аналоговый сигнал в цифровой сигнал и передает его на вход блока ЦОС 5. На входе блока ЦОС 5 сигнал (6) может быть разложен в ряд с использованием функций Бесселя в соответствии со следующими известными выражениями:

где J2n(z) и J2n-1(z) - функция Бесселя первого рода порядка 2n и 2n-1, n - порядок функции Бесселя, z - аргумент функции Бесселя. С учетом формул (7) и (8) сигнал (6) может быть преобразован к следующему виду:

Блок умножителей 7 формирует четыре сигнала, полученных путем умножения оцифрованного интерференционного сигнала (1) на четыре гармоники сигнала вспомогательной фазовой модуляции с циклическими частотами ω0, 2ω0, 3ω0, и 4ω0, генерируемых опорным генератором 6. Сигналы на выходе блока умножителей 7 могут быть разложены в соответствии с известным тригонометрическим выражением:

С учетом выражения (10) на входе ФНЧ 8 четыре сигнала, сформированных блоком умножителей 7, могут быть описаны следующими выражениями:

где M1(t), М2(t), M3(t) и M4(t) - четыре сигнала, сформированных блоком умножителей 7.

ФНЧ 8 из сигналов (11-13) выделяет гармоники интерференционного сигнала, описываемые следующими формулами:

Гармоники интерференционного сигнала (15-18) попадают на вход блока преобразования сигналов 9, где производятся их математические преобразования в соответствии с рекуррентным соотношением для функции Бесселя первого рода и формулой преобразования гармоник интерференционного сигнала:

где G(t) - сигнал на выходе блока 9, k - порядок функции Бесселя.

Устранение зависимости от глубины вспомогательной фазовой модуляции в сигнале (20) может быть продемонстрировано следующим образом. С помощью выражения (19) сигнал разности между сигналами (17) и (15), и сигнал разности между (16) и (18) могут быть представлены следующими выражениями:

Выражения знаменателя X1(t) и числителя X2(t) формулы (20), с помощью выражений (21-22), могут быть представлены следующим образом:

С помощью формул (23-24) сигнал (20) может быть описан следующим образом:

Далее сигнал (25) попадает на вход блока вычисления функции арктангенса 10, который формирует выходной измеряемый фазовый сигнал волоконно-оптического интерферометрического датчика в соответствии со следующим выражением:

В качестве конкретного примера выполнения предлагается способ измерения фазового сигнала волоконно-оптического интерферометрического датчика вне зависимости от изменений значения глубины вспомогательной фазовой модуляции, в котором в качестве оптической схемы используется массив волоконно-оптических интерферометров Майкельсона, в качестве отражателей используются зеркала Фарадея. В качестве источника оптического излучения используется полупроводниковый поверхностно-излучающий лазер с вертикальным резонатором (VCSEL). В качестве фотоприемника используется фотодиодный модуль PDI-40-RM. Сигналы с фотоприемника обрабатываются с помощью 16-битной АЦП, а сигналы с блока ЦОС 7 - с помощью 12-битного ЦАП. Математический алгоритм способа регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков вне зависимости от изменений значения глубины вспомогательной фазовой модуляции, включающий в себя блоки 5-10, реализован на программируемой логической интегральной схеме.

На фиг. 2 представлена зависимость амплитуды выходного фазового сигнала волоконно-оптического интерферометрического датчика от глубины вспомогательной фазовой модуляции. Зависимость получена в результате изменения глубины вспомогательной модуляции при воздействии на волоконно-оптический интерферометрический датчик измеряемого акустического фазового сигнала. Зависимость позволяет определить рабочий диапазон глубин модуляции для заявляемого способа (Метод 2), а также сравнить его рабочий диапазон с диапазонами аналога (Метод 3) и прототипа (Метод 1). Исходя из представленных результатов, рабочий диапазон глубин модуляции для заявляемого способа составляет от 0,9 до 5 радиан, что превосходит рабочий диапазон глубин вспомогательной модуляции прототипа (от 1,5 до 3,5 рад).

Таким образом, заявляемый способ обеспечивает повышение точности измерения выходного фазового сигнала волоконно-оптического интерферометрического датчика путем устранения влияния изменения значений глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне значений от 0,9 до 5 радиан.

Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика, включающий измерение интерференционного сигнала I(t), формирование двух сигналов вспомогательной фазовой модуляции cos(ω0t) и cos(2ω0t) и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S1(t)=-BJ1(C)sin(ϕ(t)) и S2(t)=-BJ2(C)cos(ϕ(t)), где ω0 - циклическая частота сигнала вспомогательной фазовой модуляции, В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1(t) и S2(t) - первая и вторая гармоники интерференционного сигнала, J1(C) и J2(C) - функции Бесселя первого рода первого и второго порядков, ϕ(t) - измеряемый фазовый сигнал, отличающийся тем, что формируют два дополнительных сигнала вспомогательной фазовой модуляции cos(3ω0t) и cos(4ω0t), и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I(t) в два дополнительных сигнала S3(t)=BJ3(C)sin(ϕ(t)) и S4(t)=BJ4(C)cos(ϕ(t)), где S3(t) и S4(t) - третья и четвертая гармоники интерференционного сигнала, J3(С) и J4(C) - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой



 

Похожие патенты:

Изобретение относится к области волоконной оптики и касается способа повышения стабильности масштабного коэффициента волоконно-оптического гироскопа. Гироскоп включает в себя интегрально-оптический фазовый модулятор, фотоприемник, усилитель тока фотоприемника, аналого-цифровые преобразователи, программируемую логическую интегральную схему и операционный усилитель.

Изобретение относится к области волоконной оптики и касается способа повышения стабильности масштабного коэффициента волоконно-оптического гироскопа. Гироскоп включает в себя интегрально-оптический фазовый модулятор, фотоприемник, усилитель тока фотоприемника, аналого-цифровые преобразователи, программируемую логическую интегральную схему и операционный усилитель.

Изобретение относится к области волоконной оптики, в частности к волоконно-оптическим гироскопам. Предложен способ повышения точности компенсации паразитных эффектов в интегрально-оптических фазовых модуляторах волоконно-оптического гироскопа, состоящего из источника оптического излучения, делителя оптических лучей и интегрально-оптической схемы, включающей интегрально-оптический фазовый модулятор, чувствительную волоконную катушку, фотоприемник и блок сервисной электроники, содержащий генератор напряжения вспомогательной фазовой модуляции лучей интерферометра и генератор ступенчатого напряжения.

Изобретение относится к области приборостроения и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных на основе интерферометра Саньяка.

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических гироскопов и других фазовых интерферометрических датчиков физических величин, построенных по схеме интерферометра Саньяка.

Изобретение относится к области волоконной оптики, в частности к волоконно-оптическим гироскопам. Волоконно-оптический гироскоп представляет собой волоконный кольцевой интерферометр, состоящий из чувствительной катушки и электронного блока обработки информации, образованного блоком аналоговой и блоком цифровой электроники.

Способ контроля параметров сигнала волоконно-оптического интерферометра фазового датчика с перестраиваемым источником оптического излучения включает в себя измерение амплитуды контролируемого интерферометрического сигнала, по которому судят о текущем значении глубины фазовой модуляции, ее регулировку до оптимального значения путем изменения амплитуды модулирующего сигнала, изменение центральной длины волны излучения источника оптического излучения и измерение соответствующих текущих значений амплитуды контролируемого интерферометрического сигнала.

Изобретение относится к области волоконной оптики и может быть использовано в волоконно-оптических гироскопах интерферометрического типа. Технический результат заключается в компенсации оптических шумов источника излучения, а также уменьшении дрейфа сигнала ВОГ за счет уменьшения амплитуды волн с нерабочей поляризацией, что обеспечивает повышение точности и чувствительности гироскопа.

Способ обеспечивает повышении точности волоконно-оптического гироскопа, содержащего два контура обратной связи. Повышение точности волоконно-оптического гироскопа достигается за счет компенсации третьим контуром обратной связи паразитного сигнала рассогласования, который возникает из-за низкочастотного процесса в фазовых модуляторах интегрально-оптической схемы (ИОС) и приводит к нестабильности нулевого сигнала, а также за счет повышения стабильности масштабного коэффициента волоконно-оптического гироскопа из-за более точной установки амплитуды ступенчатого пилообразного напряжения, компенсирующего при его подаче на фазовые модуляторы ИОС разность фаз Саньяка.

Изобретение относится к области волоконно-оптических гироскопов. Согласно способу производят модуляцию с амплитудой 0, ±π радиан и формирование начального фазового сдвига между лучами волоконного кольцевого интерферометра (ВКИ), равного ±π/2 радиан, с помощью ступенчатого пилообразного напряжения (СПН) треугольной формы.

Изобретение относится к области измерительной техники и касается способа определения внутренних остаточных напряжений. Способ включает в себя освещение поверхности излучением лазера, рассеянного на опорный и предметный лучи, формирование спекл-интерферограмм путем вычитания записанных на видеокамеру кадров, полученных до и после выполнения зондирующего несквозного отверстия, и определение значения остаточного напряжения по результатам подсчета числа интерференционных полос с точностью в одну полосу интерферограммы в сторону увеличения.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП).

Изобретение относится к технологиям получения топографической карты поверхности интерференционным методом и позволяет контролировать форму выпуклой сферической (СП) или асферической (АП) поверхностей.

Изобретение может использоваться при неинвазивной оценке функционального состояния поверхностных сосудов и уровня оксигенации участка биологической ткани. Устройство содержит коллиматор, светоделительный элемент, референтный канал с первым зеркалом, объектный канал, имеющий микрообъектив и плоскость для объекта исследований, приёмный канал с матричным фотоприёмником.

Заявляемое изобретение относится к оптической голографии и предназначено для формирования периодических интерференционных картин. Перестраиваемый вращением двухлучевой интерферометр, предназначенный для формирования периодических интерференционных картин, содержит последовательно расположенные по ходу излучения источник, светоделительный элемент, выполняющий две необходимые и достаточные для двухлучевого интерферометра функции: расщепление исходного пучка на два парциальных и последующее их сведение на заданной плоскости под изменяемым углом схождения, и фотоприемник.

Изобретение относится к области оптики, а именно к способам определения оптической однородности и выявления структурных дефектов оптических кристаллов, и может быть использовано для контроля качества одноосных кристаллов.

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной обработки набора изображений тест-объекта, зарегистрированных при различных положениях тест-объекта относительно оптической системы, и вычисление калибровочных параметров математической модели оптической системы и матричного приемника излучения, регистрацию изображения исследуемого объекта и обработку этого изображения, вычисление координат точек поверхности исследуемого объекта в трехмерном пространстве и расчет геометрических параметров исследуемого объекта с использованием калибровочных параметров.

Способ относится к бесконтактным оптическим методам исследования деформаций. Способ измерения деформаций заключается в том, что объект освещают когерентным светом, регистрируют спекл-фотографию объекта до и после его деформирования, сканируют полученную совмещенную спекл-фотографию и регистрируют муаровую картину, по которой определяют деформацию объекта.

Изобретение относится к области, предназначенной для измерения физических величин с использованием фазовых волоконно-оптических датчиков для измерения механических и акустических колебаний.

Изобретение относится к медицинской технике, а именно к средствам усиления или восстановления изображений в эндоскопической оптической когерентной томографии. Способ получения структурных изображений в эндоскопической оптической когерентной томографии включает получение группы А-сканов, характеризующих структуру исследуемого биологического объекта или его части в предопределенном направлении, предварительное снижение шумов для группы А-сканов, преобразование группы А-сканов в один или группу В-сканов, при этом предварительно снижают шумы для группы А-сканов посредством порогового ограничения с заданным порогом интенсивности интерференционного сигнала и полосовой фильтрации с заданными верхней и нижней частотами среза полосового фильтра, после преобразования группы А-сканов в один или группу В-сканов проводят фильтрацию одного или группы В-сканов посредством свертки с заданным ядром свертки, затем выполняют морфологическую обработку получившихся после фильтрации одного или группы В-сканов путем последовательного выполнения для них операции морфологической эрозии и операции морфологического расширения, при этом количество итераций для операции морфологической эрозии и маски для каждой итерации этой операции подбирают так, чтобы обеспечить обнуление при выполнении операции морфологической эрозии значений всех или части пикселей, соответствующих спекл-шумам, а количество итераций и маски для каждой итерации операции морфологического расширения подбираются так, чтобы обеспечить заполнение всех или части обнуленных при выполнении операции морфологической эрозии пикселей, затем выполняют сглаживание полученных в результате морфологической обработки одного или группы В-сканов медианным фильтром с заданным рангом и один или группу сглаженных медианным фильтром В-сканов визуализируют посредством пользовательского интерфейса.

Изобретение относится к области измерительной техники и касается способа определения внутренних остаточных напряжений. Способ включает в себя освещение поверхности излучением лазера, рассеянного на опорный и предметный лучи, формирование спекл-интерферограмм путем вычитания записанных на видеокамеру кадров, полученных до и после выполнения зондирующего несквозного отверстия, и определение значения остаточного напряжения по результатам подсчета числа интерференционных полос с точностью в одну полосу интерферограммы в сторону увеличения.

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков. Способ измерения фазового сигнала волоконно-оптического интерферометрического датчика включает измерение интерференционного сигнала I, формирование двух сигналов вспомогательной фазовой модуляции cos и cos, где ω0 - их циклическая частота, и с их помощью преобразование синхронным детектированием измеренного интерференционного сигнала в два сигнала S1-BJ1sin) и S2-BJ2cos), где В - коэффициент, пропорциональный амплитуде интерференционного сигнала на фотоприемном устройстве, S1 и S2 - первая и вторая гармоники интерференционного сигнала, J1 и J2 - функции Бесселя первого рода первого и второго порядков, ϕ - измеряемый фазовый сигнал, формируют два дополнительных сигнала вспомогательной фазовой модуляции cos и cos и с их помощью синхронным детектированием преобразуют измеренный интерференционный сигнал I в два сигнала S3BJ3sin) и S4BJ4cos), где S3 и S4 - третья и четвертая гармоники интерференционного сигнала, J3 и J4 - функции Бесселя первого рода третьего и четвертого порядков, и рассчитывают значение выходного измеряемого фазового сигнала в соответствии с формулой Технический результат – повышение точности измерений фазовых сигналов путем устранения влияния измерения глубины вспомогательной фазовой модуляции на интерференционный сигнал в диапазоне ее значений от 0,9 до 5 радиан. 3 ил.

Наверх