Способ формирования размеров светового пятна на динамическом объекте и устройство для его осуществления

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей, и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного управления размерами световых пятен на динамическом объекте. Предложенные способ и устройство для его реализации за счет дополнительного резонатора усиления лазерного луча и системы фокусировки светового пятна на динамическом объекте с помощью полупрозрачного деформируемого зеркала позволяют повысить мощность излучения, формирующего на объекте световое пятно (изображение), позволяют компенсировать угол расходимости светового излучения в зависимости от расстояния до динамического объекта, тем самым улучшить качество изображения на динамическом объекте. Использование в предлагаемом устройстве дополнительного линейного резонатора дает возможность интегрировать устройство в конструкцию газотурбинного двигателя. 2 н. и 6 з.п. ф-лы, 6 ил.

 

Изобретение относится к квантовой электронике, конкретно к способам формирования световых пятен от излучения концентрических излучателей и может быть использовано при создании технологических устройств, в частности, интегрированных в конструкцию газотурбинного двигателя, для адаптивного управления размерами световых пятен на динамическом объекте.

Наиболее близким по технической сущности и достигаемому результату является способ формирования размеров светового пятна на динамическом объекте, включающий определение местоположения динамического объекта, измерение расстояния до объекта и фиксирование отраженного от объекта излучения на главном сферическом фокусирующем зеркале после прохождения полупрозрачного зеркала, усиление отраженного излучения, направление усиленного излучения обратно на динамический объект и формирование светового пятна. /RU 2497064 С2 МПК F41H 13/00 H01S 3/23 Опубликовано: 27.10.2013/

Наиболее близким устройством для реализации способа является, известное устройство адаптивного управления размерами светового пятна на динамическом объекте, содержащее главное сферическое фокусирующее зеркало, деформируемое зеркало с датчиком контроля теплового состояния, датчик измерения расстояния до светового пятна по фокальной оси фокусирующего зеркала на динамическом объекте, при этом датчик соединен с автоматической системой компенсации формы оптических поверхностей главного фокусирующего и деформируемого зеркал. /Ермолаева Е.В., Зверев В.А., Филатов А.А. Адаптивная оптика. - Санкт-Петербург, СПб:НИУ ИТМО, 2012 г., Рис. 1.11 с. 33-34/

Недостатками известного способа формирования размеров светового пятна на динамическом объекте, является то, что излучение от главного сферического фокусирующего зеркала после прохождения полупрозрачного зеркала, направленное обратно на динамический объект имеет определенный угол расходимости, то есть представляет собой световой конус с вершиной в центре сферы. Ось его проходит через центр сферы резонатора, и точку нахождения объекта в пространстве в момент отражения от нее луча подсветки. Поскольку за время движения светового луча от объекта к фокусирующему зеркалу и обратно, объект сместится в сторону и одновременно приблизится или удалится от точки «отражения», то формирование на нем четкого светового пятна практически невозможно. Отражения от динамического объекта луча подсветки являются незначительными, их усиление становится недостаточным для формирования на объекте четкого светового пятна.

Недостатком известного устройства является то, что оно также не позволяет усилить отраженный сигнал до мощности достаточной для формирования на объекте четкого светового пятна. Известное устройство не может быть интегрированного в конструкцию газотурбинного двигателя.

Задача изобретения разработать способ и устройство позволяющие формировать на динамическом объекте четкие световые пятна (изображения).

Ожидаемый технический результат повышение мощности излучения формирующего на объекте световое пятно (изображение) и возможность компенсации угла расходимости светового излучения в зависимости от расстояния до динамического объекта.

Другим результатом является возможность интегрирования устройства в конструкцию газотурбинного двигателя.

Ожидаемый технический результат достигается тем, что в известном способе формирования размеров светового пятна на динамическом объекте, включающем определение местоположения динамического объекта, измерение расстояния до объекта и фиксирование отраженного от объекта излучения на главном сферическом фокусирующем зеркале после прохождения полупрозрачного зеркала, усиление отраженного излучения, направление усиленного излучения обратно на динамический объект и формирование светового пятна, по предложению, в качестве полупрозрачного зеркала используют деформируемое выпуклое охлаждаемое полупрозрачное зеркало с изменяющимся радиусом кривизны, а отраженное излучение усиливают резонатором формирования луча лазера, установленным на поверхности главного сферического фокусирующего зеркала, оптически направленным на деформируемое зеркало, при этом по фокальной оси фокусирующего зеркала измеряют расстояние до динамического объекта, на котором формируют площадь светового пятна, а при направлении усиленного излучения обратно на объект, с помощью средств компенсации формы оптических поверхностей главного фокусирующего и деформируемого зеркал, изменяют радиус кривизны отражающих поверхностей с одновременным изменением положения мнимого фокуса пропорционально углу фокусировки светового луча на динамическом объекте и формируют заданные размеры светового пятна. Определение местоположения можно производить путем подачи излучения от лазера на динамический объект. Заданные размеры светового пятна на динамическом объекте можно поддерживать постоянными независимо от расстояния до объекта, отражающая область выпуклого фокусирующего зеркала может быть выполнена близкой к параболической поверхности, а отражающая поверхность деформируемого выпуклого зеркала после деформации выполнена близкой к гиперболической поверхности, при этом управляющую силу деформации выпуклого полупрозрачного фокусирующего зеркала определяют пропорционально дальности от угла фокусировки лазерного луча на динамическом объекте по зависимости:

где: kF - коэффициент усиления, определяется САУ корректирующего устройства выпускного рефлектора;. da - диаметр выходной апертуры, формируемой и управляемой по направлению оптической системы; ωзад - заданный радиус светового пятна на динамическом объекте; Di(t) - текущая дальность; Θ(D(t)) - угол фокусировки лазерного луча.

Для реализации способа при достижении технического результата, в известном устройстве адаптивного управления размерами светового пятна на динамическом объекте, содержащем главное сферическое фокусирующее зеркало, деформируемое зеркало с датчиком контроля теплового состояния, датчик измерения расстояния до светового пятна по фокальной оси фокусирующего зеркала на динамическом объекте, соединенный с автоматической системой компенсации формы оптических поверхностей главного фокусирующего и деформируемого зеркал, по предложению, устройство снабжено резонатором для формирования луча лазера, установленным на поверхности главного сферического фокусирующего зеркала и оптически направленным на деформируемое зеркало. Главное сферическое фокусирующее зеркало и корректирующее устройство установлены на подвижной платформе управляемой оптико-электронной системой определения местоположения, сопровождения и определения дальности (расстояния) до динамического объекта, а в корректирующем устройстве установлено деформируемое выпуклое (с положительным выпуклым мениском) охлаждаемое зеркало, температура отражающей поверхности которого контролируется системой датчиков.

Сущность способа формирования размеров светового пятна на динамическом объекте заключается в выполнении известного Закона формирования сходимости лазерного луча в системе оптического резонатора лазера:

математическая модель, которого полностью согласуется с полученным Законом управления, корректирующим устройством формирующей оптики постоянной площади светового пятна лазера на динамическом объекте не зависимо от текущей дальности, приведенным к виду

где: ωo и Θо - радиус перетяжки «горла» и угол расхождения лазерного луча в оптическом резонаторе; λ - длина волны излучения; ωзад - заданный радиус светового пятна на динамическом объекте; Θi(t) - регулируемый угол схождения луча корректирующей оптической системой в зависимости от дальности Di(t) динамического объекта; da - заданная апертура корректирующей оптической системы;

где Do - дальность (расстояние)захвата динамического объекта; Vo(t) и Vp(t) - скорости носителя лазерной системы и динамического объекта соответственно; ψ(t) и βp(t) - углы векторов скорости носителя лазерной системы и динамического объекта соответственно относительно линии визирования объекта; to=0 - время определения местоположения объекта и начало сопровождение; tnop - время формирования размеров светового пятна на динамическом объекте.

Местоположение динамического объекта можно определять по отраженному от объекта излучению в видимом, инфракрасном, радиолокационном и другом диапазоне. В предложении допускается определение местоположения производить путем подачи излучения от лазера на динамический объект.

Чтобы обеспечить максимальную концентрацию энергии лазерного излучения на динамическом объекте заданные размеры светового пятна на динамическом объекте поддерживают постоянными независимо от расстояния до объекта.

Для обеспечения более четкого изображения на динамическом объекте управляющую силу деформации выпуклого полупрозрачного фокусирующего зеркала определяют пропорционально дальности от угла фокусировки лазерного луча на динамическом объекте по зависимости:

где: kF - коэффициент усиления, определяется САУ корректирующего устройства выпускного рефлектора;. da - диаметр выходной апертуры, формируемой и управляемой по направлению оптической системы; ωзад - заданный радиус светового пятна на динамическом объекте; Di(t) - текущая дальность; Θ(D(t)) - угол фокусировки лазерного луча.

Для увеличения надежности главное сферическое фокусирующее зеркало и корректирующее устройство могут быть установлены на подвижной платформе управляемой оптико-электронной системой слежения (ОЭСС), сопровождения и определения дальности (расстояния) до динамического объекта, а в корректирующем устройстве установлено деформируемое выпуклое (с положительным выпуклым мениском) охлаждаемое зеркало, температура отражающей поверхности которого контролируется системой датчиков.

Заявляемый способ формирования размеров светового пятна на динамическом объекте и конструкция устройства адаптивного управления размерами светового пятна на динамическом объекте поясняется графическими материалами.

Фиг. 1 - схема устройства адаптивного управления размерами светового пятна на динамическом объекте;

Фиг. 2 - схема формирования светового излучения;

Фиг. 3 - структурная схема системы автоматического управления (САУ);

Фиг. 4 - изменение угла фокусировки светового луча САУ корректирующей оптикой по времени сопровождения динамического объекта;

Фиг. 5 - изменение силы деформации кривизны выпуклого зеркала выработанной САУ корректирующей оптикой по времени сопровождения динамического объекта;

Фиг. 6 - изменение силы деформации кривизны выпуклого зеркала выработанной САУ корректирующей оптикой по дальности сопровождения динамического объекта.

Устройство адаптивного управления размерами светового пятна на динамическом объекте, содержит резонатор 1 формирования луча лазера, главное сферическое фокусирующие зеркало 2 с заданной апертурой выхода, составное деформируемое зеркало 3 и 4, датчик 5 контроля теплового состояния выпуклой поверхности деформируемого зеркала, датчик 6 измерения расстояния до светового пятна по фокальной оси фокусирующего зеркала на динамическом объекте, интегрированный в электронную систему слежения и сопровождения (ОЭСС). В качестве датчика для измерения расстояния может использоваться лазер подсветки (наведения). Датчик 6 соединен с автоматической системой компенсации (САУ) формы оптических поверхностей главного фокусирующего 2 и деформируемого 3 и 4 зеркал. Резонатор 1 формирования луча лазера, установлен на поверхности главного сферического фокусирующего зеркала 2 и оптически направлен на составное деформируемое зеркало 3 и 4.

Устройство при реализации способа формирования размеров светового пятна на динамическом объекте работает следующим образом.

По сигналу оптико-электронной системы слежения и сопровождения (ОЭСС), определяющей дальность и направление движения динамического объекта, включается лазерная установка состоящая (см. Фиг. 1 и 2) из лазера 1, управляемого по направлению выходного рефлектора с заданной апертурой 2, специально охлаждаемого деформируемого выпуклого зеркала с положительной мениском 3 с системой датчиков контроля теплового состояния 5 и системой автоматического управления (САУ) коррекцией адаптивной оптики (см. Фиг. 3), которая работает по замкнутому циклу с обратной отрицательной связью: датчик волнового фронта ОЭСС определяет направление и измеряет дальность до носителя объекта и посылает соответствующие команды корректирующей системы деформируемого зеркала 3. Небольшие недостатки деформируемого зеркала (такие как гистерезис или статические аберрации) не очень важны: они исправляются автоматически, вместе с атмосферными аберрациями.

В момент слежения за динамическим объектом в сопровождение, на заданной дальности , деформируемое выпуклое зеркало 3 находится в «нулевом» состоянии регулирования, при котором световое пятно лазера на объекте определено апертурой выпускающего рефлектора 2 с заданным da диаметром. В момент слежения и сопровождения, сила управления кривизной зеркала равна нулю: при заданном предварительно расстоянии , определяющий, например, радиус ближнего действия Направление излучения лазера в момент контакта с объектом на Фиг. 2 обозначены значком (∞) бесконечности. При этом мнимый фокус выпуклого деформируемого зеркала 3 совпадает (fo=fд,з) с фокусом выпускающего управляемого рефлектора 2. По мере изменения расстояния (дальности Di(t)) до динамического носителя пятна, в автоматическом режиме, независимо от сближения или удаления носителя, под воздействием управляющей силы (здесь kf коэффициент усиления системы автоматического управления, (см. Фиг. 3) меняется радиус кривизны зеркала 3 Rд,з(Θ(t)) по определенному параметру САУ: - Θ(D(t)) с одновременным смещением мнимого фокуса зеркала 3 в сторону выпускающего рефлектора 2. Смещение мнимого фокуса деформируемого зеркала относительно фокуса рефлектора 2 происходит таким образом, чтобы на определенной дальности динамического объекта Di(t) образовалось световое пятно лазерного излучения с предварительно заданным 2ωзад диаметром. Время экспозиции теплового пятна лазера на объекте заданной переменной дальности Di(t) определяется временем сопровождения носителя объекта по командам САУ в зависимости от физического состояния объекта и эффективности специальной системы охлаждения выпускающей оптической системы, которая контролируется системой датчиков 5. Рабочие процессы способа адаптивного управления размером светового пятна лазерного луча на динамическом объекте прекращаются по команде САУ после оценки системой сопровождения (ОЭСС) состояния изображения на объекте: критическое разрушение размеров изображения, локальное повреждение изображения или по команде теплового датчика 5.

Нестационарный процесс управления замкнутым циклом системы коррекции (САУ) площади светового пятна на динамическом объекте, представленной на рисунке 3, состоит в следующем: входным сигналом САУ является - , который передается в сумматор и далее в измерительное устройство с оператором Wиз,у(р), где вырабатывается измеренный сигнал пропорциональный через корректирующее звено обратной отрицательной связи с оператором Wс.к(p) и формируется параметр рассогласования заданной точности определения текущей дальности динамической мишени: При достижении заданной точности определения текущей дальности Di(t) и заданных предварительно параметрах: da - диаметра выходной апертуры формирующей управляемой по направлению оптической системы с рефлектором 2 и ωзад - радиуса светового пятна на динамическом объекте, вырабатывается сила управления деформацией отражающей поверхности выпуклого зеркала 3, которая определяет постоянную, заданную площадь светового пятна луча лазера на динамическом объекте на текущей дальности. Площадь светового пятна луча лазера остается постоянной независимо от изменяемой дальности (сближение или удаление) динамического объекта после его определения в слежение и сопровождение ОЭСС. Закон управления деформацией выпуклой поверхности зеркала, вырабатываемый САУ системы коррекции в зависимости от дальности динамического объекта приводится к виду

где: - текущая дальность объекта Di(t) определена зависимостью (4).

Пример

Способ реализован при следующих значениях исходных параметров. Расстояние до динамического объекта на подвижной платформе, в момент взятия в сопровождение Do=10000 м;

Скорость платформы носителя с объектом Vp=1200 м/с; Скорость платформы носителя лазерной системы Vo=350 м/с; Коэффициент усиления САУ системы коррекции kF=8⋅103.

На графиках приведены: изменения угла фокусировки лазерного луча на объекте по времени Фиг. 4; изменения силы деформации деформируемого зеркала в зависимости от времени сопровождения Фиг. 5, и изменения силы деформации от дальности динамическго объекта при сближении показаны Фиг. 6. Из приведенных данных следует:

При заданном радиусе светового пятна на объекте: графики сверху вниз - ωзад=0,005 м; - 0,01 м; - 0,02 м; - 0,03 м; - 0,04 м.

Определено местоположение и начато сопровождение динамического объекта через to=14 сек на дальности 10000 метров.

При времени сближения от момента начала сопровождения объекта до точки встречи основного усиленного излучения Δt=4 сек, расстояние приблизительно составило 6700 м.

Применение изобретения позволяет повысить мощность излучения формирующего на объекте световое пятно (изображение), позволяет компенсировать угол расходимости светового излучения в зависимости от расстояния до динамического объекта, тем самым улучшить качество изображения на динамическом объекте. Использование в предлагаемом устройстве дополнительного линейного резонатора дает возможность интегрировать устройство в конструкцию газотурбинного двигателя.

1. Способ формирования размеров светового пятна на динамическом объекте, включающий определение местоположения динамического объекта, измерение расстояния до объекта и фиксирование отраженного от объекта излучения на главном сферическом фокусирующем зеркале после прохождения полупрозрачного зеркала, усиление отраженного излучения, направление усиленного излучения обратно на динамический объект и формирование светового пятна, отличающийся тем, что в качестве полупрозрачного зеркала используют деформируемое выпуклое охлаждаемое полупрозрачное зеркало с изменяющимся радиусом кривизны, а отраженное излучение усиливают резонатором формирования луча лазера, установленным на поверхности главного сферического фокусирующего зеркала, оптически направленным на деформируемое зеркало, при этом по фокальной оси фокусирующего зеркала измеряют расстояние до динамического объекта, на котором формируют площадь светового пятна, а при направлении усиленного излучения обратно на объект, с помощью средств компенсации формы оптических поверхностей главного фокусирующего и деформируемого зеркал, изменяют радиус кривизны отражающих поверхностей с одновременным изменением положения мнимого фокуса пропорционально углу фокусировки светового луча на динамическом объекте и формируют заданные размеры светового пятна.

2. Способ формирования размеров светового пятна на динамическом объекте по п. 1, отличающийся тем, что определение местоположения производят путем подачи излучения от лазера на динамический объект.

3. Способ формирования размеров светового пятна на динамическом объекте по п. 1, отличающийся тем, что заданные размеры светового пятна на динамическом объекте поддерживают постоянными независимо от расстояния до объекта.

4. Способ формирования размеров светового пятна на динамическом объекте по п. 1, отличающийся тем, что управляющую силу деформации выпуклого полупрозрачного фокусирующего зеркала определяют пропорционально дальности от угла фокусировки лазерного луча на динамическом объекте по зависимости

,

где kF - коэффициент усиления, определяется САУ корректирующего устройства выпускного рефлектора; da - диаметр выходной апертуры, формируемой и управляемой по направлению оптической системы; ωзад - заданный радиус светового пятна на динамическом объекте; Di(t) - текущая дальность; Θ(D(t)) - угол фокусировки лазерного луча.

5. Способ по п. 1, отличающийся тем, что отражающая область выпуклого фокусирующего зеркала выполнена близкой к параболической поверхности, а отражающая поверхность деформируемого выпуклого зеркала после деформации остается близкой к гиперболической поверхности.

6. Устройство адаптивного управления размерами светового пятна на динамическом объекте, содержащее главное сферическое фокусирующее зеркало, деформируемое зеркало с датчиком контроля теплового состояния, датчик измерения расстояния до светового пятна по фокальной оси фокусирующего зеркала на динамическом объекте, при этом датчик соединен с автоматической системой компенсации формы оптических поверхностей главного фокусирующего и деформируемого зеркал, отличающееся тем, что оно снабжено резонатором для формирования луча лазера, установленным на поверхности главного сферического фокусирующего зеркала и оптически направленным на деформируемое зеркало.

7. Устройство адаптивного управления размерами светового пятна на динамическом объекте по п. 6, отличающееся тем, что главное сферическое фокусирующее зеркало и корректирующее устройство установлены на подвижной платформе управляемой оптико-электронной системой захвата, сопровождения и определения дальности (расстояния) до динамического объекта.

8. Устройство адаптивного управления по п. 6, отличающееся тем, что в корректирующем устройстве установлено деформируемое выпуклое (с положительным выпуклым мениском) охлаждаемое зеркало, температура отражающей поверхности которого контролируется системой датчиков.



 

Похожие патенты:

Согласно настоящему изобретению предложена эксимер-лазерная система. Камера задающего генератора может генерировать лазерные импульсы с суженной шириной линии и малой энергией посредством модуля сужения ширины линии в качестве затравочного света.

Изобретение относится к лазерной технике. Твердотельный лазерный усилитель включает основанный на лазерных диодах источник излучения накачки, выступающий в роли волновода для излучения накачки твердотельный активный элемент продолговатой аксиально-симметричной формы с переменным по площади поперечным сечением с двумя круговыми торцевыми гранями, служащими для ввода излучения в твердотельный активный элемент и вывода излучения из твердотельного активного элемента, который контактирует боковой поверхностью со слоем материала, обеспечивающим волноводное распространение излучения накачки.

Изобретение относится к аппарату и способу лазерного аддитивного производства. Лазер обеспечивает функциональный лазерный пучок с длиной волны в диапазоне 405-475 нм.

Изобретение относится к оптическим элементам для волоконных лазеров, в частности к насыщающимся поглотителям. Сутью изобретения является устройство для переключения режимов работы оптоволоконного лазера на основе управляемого насыщающегося поглотителя из углеродных нанотрубок, состоящее из подложки, на которой размещены электрод, противоэлектрод, отполированная до сердцевины часть оптоволокна, соединенная прямым контактом с электродом, выполненным в виде пленки из углеродных нанотрубок, при этом отполированная часть волокна, пленка и противоэлектрод соединены электрически между собой через ионную жидкость, и указанная пленка выполнена с возможностью изменения нелинейного поглощения на длине волны лазера при приложении разности потенциалов на электрод и противоэлектрод.

Изобретение относится к лазерной и волоконной технике. Волоконно-оптический усилитель содержит оптический мультиплексор и оптическое волокно, оптически соединенное с оптическим мультиплексором, при этом селективные отражатели первой и второй длин волн сформированы на оптическом волокне, причем селективный отражатель первой длины волны выполнен с возможностью отражать излучение с первой длиной волны, а селективный отражатель второй длины волны выполнен с возможностью отражать излучение со второй длиной волны, которая больше первой длины волны.

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее диаметра.

Техническое решение относится к области нелинейной оптики и квантовой электроники. Способ стабилизации и перестройки длин волн однофотонных состояний на основе спонтанного параметрического рассеяния реализуется устройством, состоящим из оптически связанных и последовательно расположенных нелинейно-оптического элемента, помещенного одновременно в термостатирующее устройство и в источник внешнего электрического поля; системы отсекающих интерференционных фильтров, для отсечения излучения накачки; устройства, разделяющего поток фотонов; дисперсионного элемента; счетчика фотонов.

Изобретение относится к кристаллам, предназначенным для применения в твердотельных лазерах, а именно в CPA-лазерах (от английских слов “chirp pulse amplification” – “усиление чирпированного импульса”) - короткоимпульсных лазерах с высокой пиковой мощностью.

Изобретение относится к получению монокристаллов метабората бария ΒaΒ2O4 (ВВО), применяемых в лазерных системах. Рост кристалла ВВО осуществляют в прецизионной нагревательной печи, обладающей высокой симметрией и стабильностью теплового поля из высокотемпературного раствора-расплава, включающего расплав бората бария ΒaΒ2O4 и комплексный растворитель на основе эвтектического состава LiF - NaF с избытком B2O3 от 3 до 7 вес.

Изобретение относится к области лазерной техники. Твердотельный активный элемент состоит как минимум из трех слоев, при этом слой, содержащий ионы активатора, сформирован в виде изгиба в радиальном направлении по отношению к оптической оси упомянутого элемента.

Изобретение относится к электрошоковым устройствам. Комплекс средств для использования собаки под управлением кинолога содержит взаимосвязанные намордник и ошейник, поводок на силовой механической гибкой основе и со средствами фиксации и средство дозированного нейтрализующего воздействия на объект нейтрализации в виде электрошокового устройства (ЭШУ).

Изобретение относится к области военной технике и может быть использовано для уничтожения боевой техники и живой силы противника. Подводная беспилотная ракетная система, управляемая с командного пункта, с мобильными базовыми объектами, мобильными пусковыми установками, которые оснащены электромеханическими устройствами управления движения и вооружением, спутниковой системой навигации, ЭВМ с электронной картой театра военных действий и координатами целей, которые могут изменяться с командного пункта, дополнительно содержит несколько командных пунктов наземного и подводного базирования.

Изобретение относится к беспилотной легкобронированной технике и предназначено для автоматизированного контроля технического состояния самоходных гаубиц. В комплекс, содержащий легкобронированный кевларовый корпус, шасси на гусеничном резиновом ходу с силовыми электроприводами правого и левого ведущих колес, аккумуляторную батарею, дизель-генератор, пульт дистанционного управления, дополнительно введены приемопередатчик ГЛОНАСС, 12,7-мм танковый пулемет с электроспуском, гидронасос, гидропривод с грузозахватным устройством и манипулятором, лебедка с электроприводом, блок управления телекоммуникационными устройствами, блок управления гидроприводами и шасси, БЭВМ диагностирования и управления агрегатами, сиденье оператора-диагноста, укладочный ящик с комплектом инструментов и приспособлений, стыковочные кабели с разъемами, мини-квадрокоптер.

Изобретение относится к области военной техники, а именно к конструкции больших эластичных контейнеров, предназначенных для хранения и транспортировки жидкостей, в том числе нефтепродуктов, рам шасси самоходных транспортных средств, а также средств камуфляжа, то есть укрытия или маскировки военной автомобильной техники.

Изобретение относится к области вооружения, в частности к конструкциям боевых машин и способам их использования совместно с вертолетами. Транспортный комплекс военного назначения включает в себя наземную бронированную машину (НБМ), состоящую из оперативно отделяемых модулей - шасси (1), боевого отделения или его фрагмента для боеукладки (2), и бронекапсулы (3) для размещения в ней экипажа.

Группа изобретений относится к системе и способу предотвращения нарушений правил полетов беспилотными летательными аппаратами (БПЛА). Система содержит наземный центр контроля, наземные средства обнаружения подозреваемого БПЛА, БПЛА-перехватчик, содержащий бортовые средства обнаружения и средства захвата подозреваемого БПЛА.

Изобретение относится к области бесконтактных способов ведения боевых действий. Способ бесконтактного ведения боевых действий включает этап осуществления разведывательных действий, этап подготовки сил и средств для нанесения поражения разведанных объектов противника и этап доставки с использованием ракетоносцев-доставщиков в зону поражающего радиуса действия вооружения для уничтожения разведанных целей противника.

Изобретение относится к способу функционального подавления беспилотного летательного аппарата (БПЛА). Для реализации способа определяют координаты местоположения БПЛА, доставляют при помощи пускового устройство в область расположения БПЛА контейнер с элементами функционального подавления, осуществляют генерацию серии сверхкоротких СВЧ радиоимпульсов для нарушения работоспособности радиоэлектронных элементов БПЛА, после полного разряда источника электропитания осуществляют подрыв заряда самоликвидации контейнера для образования облака красителя в целях образования непрозрачной пленки на поверхности элементов БПЛА и в целях образования поля поражающих элементов, которые приводят к физическому повреждению БПЛА.

Изобретение относится к способу функционального подавления беспилотных летательных аппаратов. Для реализации способа обнаруживают беспилотный летательный аппарат, в область на расстоянии 50-100 метров от него при помощи пускового устройства доставляют патрон, выполненный с возможностью генерации серии сверхкоротких сверхвысокочастотных радиоимпульсов в определенном диапазоне частот, производят генерацию этих импульсов в сторону беспилотного летательного аппарата до полного разряда источника электропитания, после этого выполняют самоуничтожение патрона путем его подрыва для создания поля поражающих элементов для физического повреждения беспилотного летательного аппарата и его уничтожения.

Изобретение относится к экзоскелету для оказания человеку помощи для поддержки и передачи нагрузки. Экзоскелет выполнен с возможностью ношения пользователем с возможностью воспринимать и передавать нагрузку, воспринимаемую головой, шеей и/или туловищем пользователя, вниз на опорную поверхность.
Наверх