Способ выделения хлористого натрия из сточной воды

Изобретение относится к водоочистке. Способ выделения хлористого натрия из сточной воды включает введение в сточную воду осадителя – ацетона в количестве, превышающем массу исходной сточной воды более чем в 4,7 раза, и кристаллизацию хлористого натрия. Изобретение позволяет увеличить степень выделения хлористого натрия из сточной воды. 1 табл., 10 пр.

 

Изобретение относится к способу выделения из сточной воды хлористого натрия - сырья для электролитического получения хлора и щелочи.

В ряде производств химической промышленности образуются сточные воды, обогащенные хлористым натрием. К таким производствам относятся процессы получения эпихлоргидрина, эпоксидно-диановых смол и других производств, в которых используется прием щелочного дегидрохлорирования. Концентрация хлористого натрия в сточных водах может составлять 10-26% масс. Утилизация таких сточных вод вызывает большие трудности из-за высокого содержания солей, не удаляемых на станциях биологической очистки.

В то же время сточные воды с высокой концентрацией NaCl являются потенциальным источником этой соли - сырья для промышленного получения хлора и щелочи.

Известен способ выпарки воды с образованием кристаллической соли [CN 207158994]. В другом способе сточную воду, содержащую NaCl, упаривают до насыщения, и вводят в нее хлористый водород [CN 102847337], уменьшающий растворимость хлористого натрия. Однако эти методы требуют высоких энергетических затрат на выпарку воды, не могут обеспечить чистоту образующейся твердой соли и в то же время приводят к образованию сточной воды, насыщенной другим минеральным соединением.

Наиболее близким к заявляемому является способ очистки сточной воды от хлористого натрия [SU 706331, C02F 1/02, опуб. 30.12.1979]. В соответствии с изобретением сточные воды, содержащие 9% масс. NaCl, подвергаются упариванию до содержания соли 20-25% масс. В образовавшийся насыщенный раствор NaCl добавляется NaOH до его концентрации в образовавшемся растворе 500-600 г/л. Введение щелочи в раствор приводит к уменьшению растворимости NaCl, в результате чего соль выпадает в осадок.

Недостатком этого изобретения является низкая степень выделения NaCl из сточной воды.

Задачей изобретения является разработка способа, позволяющего увеличить степень выделения хлористого натрия из сточной воды по сравнению с прототипом без необходимости предварительного выпаривания для образования насыщенного раствора NaCl.

Данная задача решается тем, что в способе выделения хлористого натрия из сточной воды, включающем введение в сточную воду осадителя, кристаллизацию хлористого натрия, выпадение его в осадок и отделение выпавшего осадка от раствора, в качестве осадителя используют ацетон в количестве, превышающем массу исходной сточной воды более чем в 4,7 раза.

Технический результат от использования предлагаемого изобретения заключается в увеличении степени выделения кристаллического хлористого натрия из сточной воды.

Примеры, иллюстрирующие, но не ограничивающие, настоящее изобретение.

Пример 1 (по прототипу)

Сточную воду массой 1500 г, содержащую 9% масс. NaCl, упаривают до концентрации соли 23% масс. В образовавшийся раствор добавляют 325 г NaOH. При этом в осадок выпадает кристаллический NaCl. Результаты примера приведены в таблице.

Пример 2

Сточную воду производства эпоксидно-диановых смол, содержащую 16,87% масс. NaCl, массой 598 г смешивают с 4800 г ацетона. При этом в осадок выпадает кристаллический NaCl.

Результаты примера приведены в таблице.

Пример 3

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 2. Отличие состоит в том, что количество добавляемого ацетона составляет 2810 г.

Результаты примера приведены в таблице.

Пример 4

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 2. Отличие состоит в том, что количество добавляемого ацетона составляет 2750 г.

Результаты примера приведены в таблице.

Пример 5

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 2. Отличие состоит в том, что количество добавляемого ацетона составляет 2500 г.

Результаты примера приведены в таблице.

Пример 6

Сточную воду производства эпоксидно-диановых смол, содержащую 24,58% масс. NaCl, массой 598 г смешивают с 5400 г ацетона. При этом в осадок выпадает кристаллический NaCl.

Результаты примера приведены в таблице.

Пример 7

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 6. Отличие состоит в том, что количество добавляемого ацетона составляет 2900 г.

Результаты примера приведены в таблице.

Пример 8

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 6. Отличие состоит в том, что количество добавляемого ацетона составляет 2770 г. Результаты примера приведены в таблице.

Пример 9

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 6. Отличие состоит в том, что количество добавляемого ацетона составляет 2400 г. Результаты примера приведены в таблице.

Пример 10

Процесс выделения NaCl из сточной воды производства эпоксидно-диановых смол проводят аналогично примеру 6. Отличие состоит в том, что количество добавляемого ацетона составляет 9125 г. Результаты примера приведены в таблице.

Таким образом, результаты, представленные в таблице, показывают, что осадок NaCl выпадает при массовом избытке ацетона более чем 4,7; при этом указанный прием позволяет увеличить степень выделения кристаллической соли по сравнению с прототипом без необходимости предварительного выпаривания.

Способ выделения хлористого натрия из сточной воды, включающий введение в сточную воду осадителя, кристаллизацию хлористого натрия, выпадение его в осадок и отделение выпавшего осадка от раствора, отличающийся тем, что в качестве осадителя используют ацетон в количестве, превышающем массу исходной сточной воды более чем в 4,7 раза.



 

Похожие патенты:

Изобретение может быть использовано при обработке почв, пористых структур и сточных вод с целью подавления активности патогенных микроорганизмов. Для получения коллоидных растворов трисульфида титана в деионизированной воде, обладающих противомикробной активностью, проводят синтез трисульфида титана из металлического титана и порошка элементарной серы, взятых в стехиометрическом соотношении в соответствии с реакцией Ti+3S=TiS3.

Изобретение относится к порошкообразному оксиду титана, который подвергают неорганической обработке кремнием, к способу его получения и его применению в производстве катализаторов, в особенности для применения в качестве фотокатализаторов и в качестве носителей для катализаторов нефтеочистки.

Изобретение относится к системам контроля миграции элементов тяжелых металлов в материале для закладки выработанного пространства угольных шахт и, в частности, к системе для регулирования миграции элементов тяжелых металлов в материале для закладки выработанного пространства на основе принципов электрофореза.

Изобретение может быть использовано в жилищно-коммунальном хозяйстве. В качестве антисептического средства для обработки сточных вод применяют измельченный ячеистый бетон плотностью 800 кг/м3, пропитанный в течение 48 часов одномолярным раствором нитрата свинца.

Изобретение относится к водоочистке и может быть использовано на объектах АПК, ЖКХ, пищевой, медицинской, фармацевтической, электронной и радиотехнической промышленности.

Изобретение относится к водоочистке и может быть использовано для локальной очистки ливневых и талых стоков с территорий промышленных и автотранспортных предприятий, автозаправочных станций и станций технического обслуживания автомобилей.

Изобретение относится к способам модифицирования природных целлюлозосодержащих сорбентов. Способ предусматривает двухстадийную обработку материала, выбранного из хлопковой или древесной целлюлозы, короткого льняного волокна, древесных опилок или стеблей топинамбура.

Изобретение относится к области экологии и может быть использовано для утилизации очищенных сточных вод. Устройство утилизации очищенных сточных вод включает накопитель очищенных сточных вод 2 и корпус 1, выполненный в виде обечайки, закрытой с торцевых сторон передней и задней крышками, при этом внутри корпуса последовательно установлены сначала побудитель расхода наружного воздуха 6, а затем сопло Лаваля 7, в передней крышке корпуса выполнено отверстие, к которому подсоединена труба подвода потока наружного воздуха 5 в суживающуюся часть сопла Лаваля, в задней крышке корпуса выполнено отверстие, к которому подсоединена труба отвода паровоздушного потока 11 из расширяющейся части сопла Лаваля, кроме того, в самом узком поперечном сечении сопла Лаваля 7, расположенном в месте сопряжения его частей, установлены с равномерным шагом по всей окружности упомянутого сечения форсунки туманообразования, входы которых подключены к раздающему коллектору, соединенному с накопителем очищенных сточных вод 2 посредством трубопровода подачи очищенных сточных вод 3, снабженного водяным насосом 4 и проходящего через отверстие в корпусе 1.

Изобретение относится к очистке грунтовых вод в районах интенсивной добычи и переработки нефти. Способ очистки грунтовых вод от тяжелых металлов и нефтепродуктов включает фильтрование грунтовых вод в геохимическом барьере, заполненном минеральным зернистым материалом - силицированным кальцитом фракции 20-40 мм.

Изобретение может быть использовано в сельском хозяйстве, пищевой промышленности, медицине. Способ получения католитов-антиоксидантов включает обработку постоянным электрическим током исходных растворов в катодной и анодной камере установки с непроточным диафрагменным электролизером.

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и соединений в получаемых солях.

Изобретение относится к аналитической химии и метрологическому обеспечению средств измерений состава твердых и жидких веществ и материалов. Проводят определение катионов и анионов методом капиллярного электрофореза, затем измерение массовых долей примесей методом масс-спектрометрии с индуктивно-связанной плазмой и определение массовой доли органического компонента и кристаллизационной воды методом термогравиметрии с дифференциально-сканирующей калориметрией с масс-спектрометрическим детектором.

Изобретение может быть использовано в химической промышленности. Хлорид металла Mx+Clx- получают взаимодействием карбоната металла в виде твердого вещества с фосгеном, дифосгеном и/или трифосгеном.

Изобретение относится к способу получения хлорида металла Mx+Clx-, в котором карбонат металла в виде твердого вещества превращают в реакции с хлорирующим агентом с образованием хлорида металла Mx+Clx-, причем металл М выбирают из группы щелочных металлов, щелочноземельных металлов, Al и Zn, при этом «х» соответствует валентности катиона металла, причем в качестве реагента дополнительно добавляют металл, который отличается от металла М карбоната металла или соответствует ему.

Изобретение может быть использовано в химической промышленности. Способ получения хлористого калия методом растворения и кристаллизации включает сушку влажного концентрата с получением обеспыленного продукта и пылевой фракции.
Изобретение относится к новому жидкому реагенту для получения органо-неорганических перовскитов, которые могут быть использованы для светопоглощающих материалов в солнечной энергетике.

Изобретение может быть использовано в производстве минеральных солей. Для получения хлористого калия горячий насыщенный по хлористому калию и хлористому натрию раствор охлаждают на вакуум-кристаллизационной установке (ВКУ).

Изобретение относится к химии нефти и касается использования неорганических реагентов для нефтедобывающей промышленности, в частности, для кислотной и солевой обработки нефтесодержащего пласта, представленного неоднородными по проницаемости карбонатными или терригенными коллекторами.

Изобретение может быть использовано при получении хлористого калия галургическим методом. Способ управления указанным процессом включает регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от концентрации в нем хлористого калия и его температуры.

Изобретение относится к химии и нефтедобывающей промышленности, а именно к способам вытеснения остаточной нефти из неоднородных по проницаемости пластов, и может быть использовано для солевой обработки нефтесодержащего пласта, представленного неоднородными по проницаемости карбонатными или терригенными коллекторами.

Изобретение относится к водоочистке. Способ выделения хлористого натрия из сточной воды включает введение в сточную воду осадителя – ацетона в количестве, превышающем массу исходной сточной воды более чем в 4,7 раза, и кристаллизацию хлористого натрия. Изобретение позволяет увеличить степень выделения хлористого натрия из сточной воды. 1 табл., 10 пр.

Наверх