Электродуговой плазмотрон для сжигания твердых отходов



Электродуговой плазмотрон для сжигания твердых отходов
Электродуговой плазмотрон для сжигания твердых отходов
H05H1/26 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2713736:

Данилова Ольга Викторовна (RU)
Мещеряков Виктор Николаевич (RU)
Пикалов Владимир Владимирович (RU)
Ласточкин Денич Владимирович (RU)
Евсеев Алексей Михайлович (RU)

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму в электродуговых камерах для сжигания твердых отходов. Технический результат - упрощение процессов регулирования температуры и повышение производительности при сжигании материала за счет дополнительного нагрева сжигаемого материала электрической спиралью, выполненной из тугоплавкого материала. Электродуговой плазмотрон содержит расположенный вертикально трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, с двумя герметичными крышками, в трубчатом корпусе выполнены два наклоненных вниз отверстия с подвижными электродами, подключенными к регулируемому блоку питания постоянным по знаку напряжением. Соосно с корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра корпуса, в полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью корпуса расположены перпендикулярно по отношению к оси положения электродов два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем верхний край полюсов расположен на уровне нижних концов электродов. В трубчатом корпусе выполнены наклонные отверстия для подачи плазмообразующего газа. В верхней крышке выполнены каналы для подвода сжигаемого материала и для отвода газообразных продуктов горения. На внутренней поверхности нижней крышки размещена спиралевидная обмотка из проводящего тугоплавкого неизолированного материала, закрытая пластиной из непроводящего тугоплавкого материала, концы обмотки подключены к источнику электроэнергии, нижняя крышка соединена с приводом ее открывания и закрывания, части электродов, находящиеся вне трубчатого корпуса, подключены к толкателям и устройствам их наращивания. 1 ил.

 

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму для сжигания твердых отходов в электродуговых камерах сжигания.

Известен электродуговой нагреватель газа постоянного тока, содержащий разрядную камеру, катодный узел и выполненный в виде, по меньшей мере, двух одинаковых плазмотронов, каждый из которых снабжен торцевым и выходным вспомогательным электродами, катодный узел выполнен в виде, по меньшей мере, двух одинаковых плазмотронов, каждый из которых снабжен торцевым и выходным вспомогательными электродами заданного диаметра [1].

Недостатком данного устройства является сложность регулирования производительности плазмотрона.

Известен также электродуговой плазмотрон, содержащий анодный и катодный блоки, расположенные соосно вдоль оси плазмотрона, разделенные изолятором, в котором имеется узел подачи рабочего плазмообразующего газа в электро-газоразрядную камеру, при этом в анодном и катодном блоках имеются входное и выходное отверстия и полости для прохождения охлаждающего агента, кроме того в анодном блоке имеется радиальное отверстие для ввода порошкового материала. В анодном и катодном блоках дополнительно имеются отверстия, в которых закреплены штуцеры, при этом дополнительные отверстия расположены с диаметрально противоположной стороны относительно входного анодного и катодного отверстий, при этом дополнительные штуцеры соединены дугообразным электроизоляционным трубопроводом для прохождения охлаждающего агента из анодного в катодный блок, концы которого закреплены на анодном выходном и катодном входном штуцерах [2].

Недостатком данного устройства является сложность конструкции, и сложность регулирования подачи энергии и регулирования температуры в объеме электро-газоразрядной камеры.

Наиболее близким техническим решением к предлагаемому изобретению является электродуговой плазмотрон, содержащий расположенный вертикально трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, с двумя герметичными крышками, в трубчатом корпусе перпендикулярно оси щелевой камеры выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом - катодный электрод, которые подключены к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, а также к блоку зажигания дуги. Соосно с трубчатым корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью корпуса расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем ось полюсов расположена перпендикулярно по отношению к оси положения электродов. В трубчатом корпусе выполнены отверстия для подачи плазмообразующего газа. В верхней крышке выполнены каналы для подвода сжигаемого материала и отвода газообразных продуктов горения, в нижней крышке - канал для отвода несгоревших остатков [3].

Недостатком данного плазмотрона является низкая производительность, из-за большого интервала времени, требуемого на замену электродов, вследствие выгорания электродов в процессе горения дуги, и новый запуск установки. Для нового зажигания дуги требуется специальный блок.

Задачей изобретения является повышение производительности и эффективности действия электродугового плазмотрона при сжигании промышленных отходов.

Решение поставленной задачи достигается тем, что электродуговой плазмотрон для сжигания твердых отходов, содержащий вертикально установленный трубчатый корпус, герметично закрытый с торцов крышками, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную камеру, в верхней крышке трубчатого корпуса выполнены окно для подачи сжигаемых материалов, герметично закрытое заглушкой, а так же отверстие для отвода газообразных продуктов горения, в трубчатом корпусе выполнены два расположенных друг против друга отверстия, в которых установлены анодный и катодный электроды, подключенные к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, соосно с трубчатым корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью трубчатого корпуса расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, ось полюсов расположена перпендикулярно по отношению к электродам, в трубчатом корпусе выше уровня расположения горящей дуги выполнены отверстия, наклоненные вниз в направлении расположения нижней точки горения дуги, которые соединены с узлом подачи рабочего плазмообразующего газа, отверстия в трубчатом корпусе для установки электродов выполнены с наклоном вниз в направлении к точке пересечения оси трубчатого корпуса с максимально допустимым уровнем сжигаемых твердых отходов, верхний край полюсов находится на одном уровне с нижними концами электродов, на внутренней поверхности нижней крышки трубчатого корпуса размещена спиралевидная обмотка из проводящего тугоплавкого неизолированного материала, концы которой выведены через отверстия, выполненные в нижней крышке, и подключены к еще одному регулируемому источнику электроэнергии, сверху обмотка закрыта пластиной из непроводящего тугоплавкого материала, прикрепленной к нижней крышке, нижняя крышка выполнена подвижной и соединена с реверсивным приводом ее открывания и закрывания, части электродов, находящиеся вне трубчатого корпуса, соединены с реверсивными толкателями и устройствами их наращивания.

На чертеже приведены продольный и поперечный разрезы плазмотрона.

Устройство содержит вертикально расположенный трубчатый корпус 1, выполненный из непроводящего электрический ток тугоплавкого материала, имеющего в стенке два сквозных отверстия, расположенных друг против друга и выполненных с наклоном вниз к оси трубчатого корпуса, в которых находятся наклоненные вниз анодный электрод 2 и катодный электрод 3, наружные концы которых подключены к выходам блока питания 4 с регулируемым по уровню и постоянным по знаку напряжением. Между электродами 2 и 3 имеется промежуток, через который в рабочем состоянии проходит электрическая дуга. Оба торцевых конца трубчатого корпуса герметично закрыты крышками из непроводящего электрический ток тугоплавкого материала верхней 5 и подвижной нижней 6. Корпус 1 и крышки 5 и 6 образуют рабочую камеру. Соосно с трубчатым корпусом установлен трубчатый магнитопровод 7, внутренние размеры полости которого больше наружных размеров трубчатого корпуса 1. В полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью корпуса соосно расположены два полюса 8 и 9 с обмотками 10, выводы которых подключены к источнику регулируемого напряжения постоянного тока 11, причем ось полюсов 8 и 9 расположена перпендикулярно по отношению к электродам 2 и 3, а верхний край полюсов 8 и 9 находится на одном уровне с нижними концами электродов 2 и 3. Анодный электрод 2 и катодный электрод 3 первоначально сближаются с помощью реверсивных толкателей 12 и 13 до момента контакта и загорания дуги, а затем разводятся реверсивными толкателями 12 и 13 на заданное расстояние, обеспечивающее устойчивое горение дуги. В верхней крышке 5 выполнено герметично закрываемое заглушкой 14 окно для подачи сжигаемого материала и отверстие 15 для удаления газов, образующиеся в результате сгорания загруженного материала. В трубчатом корпусе 1 выше уровня расположения горящей дуги выполнены, наклоненные вниз в направлении расположения нижней точки горения дуги, отверстия 16 для подачи под давлением плазмообразующего газа от узла подачи 17. На внутренней поверхности нижней крышки 6, размещена спиралевидная обмотка из проводящего тугоплавкого неизолированного материала 18, концы обмотки 18 выведены через отверстия 19 и 20, выполненные в крышке 6, и подключены к источнику электроэнергии 21. Спираль закрыта сверху пластиной 22, выполненной из непроводящего тугоплавкого материала, круглой формы с диаметром, равным внутреннему диаметру корпуса 1, прикрепленной крышке 6.

Части электродов 2 и 3, находящиеся вне трубчатого корпуса, соединены с реверсивными толкателями 12 и 13 и устройствам их наращивания 23 и 24. Нижняя крышка 6 является подвижной, она соединена с реверсивным приводом 25, служащим для ее открывания при удалении отходов горения сжигаемого материала и последующего закрывания.

Устройство работает следующим образом.

В полость трубчатого корпуса 1 через окно 13 в верхней крышке подается сжигаемый материал, падающий под действием силы тяжести на крышку 6 с размещенной на ней спиральной проводящей обмоткой 18. Сжигаемый материал заполняет корпус до уровня горения дуги.

К аноду 2 и катоду 3 от блока питания 4 подводится напряжение, инициируется электродуговой разряд и зажигается дуга. Включают источник регулируемого напряжения постоянного тока 11, ток возбуждения протекает по обмотке 10 установленной на полюсах 8 и 9, и создает электромагнитное поле, под действием которого возникает электромагнитная сила, растягивающая дугу вниз к загруженному материалу. Отклонение дуги вниз от оси положения электродов увеличивают путем повышения тока в обмотке 10. Через отверстия 16, наклоненные вниз в направлении нижней точки горения дуги, от узла подачи 17 в рабочую камеру подается плазмообразующий газ под давлением, который проходит через дугу, и образуется плазма, сжигающая загруженный материал. Давление и объем подаваемого рабочего плазмообразующего газа регулируется узлом подачи 17. Газы, образующиеся в результате сгорания загруженного материала, поднимаются вверх и удаляются через канал 15.

При необходимости увеличения мощности, выделяемой в дуге, увеличивают напряжение, подводимое от блока питания 4 к выводам анода 2 и катода 3, при этом возрастает ток, протекающий через дугу, возрастает температура и результирующая мощность выработанной плазмы.

Для дополнительного подогрева сжигаемого материала подключают к регулируемому источнику электроэнергии 21 спиралевидную обмотку из проводящего тугоплавкого неизолированного материала 18, установленную на внутренней поверхности нижней съемной крышки 6, обращенной к полости корпуса 1. Обмотка 18 может быть выполнена из нихрома, вольфрама, или другого проводящего тугоплавкого материала. По обмотке 18 протекает ток, она нагревается до высокой температуры, что ускоряет процесс сжигания твердых отходов. Регулируя величину тока, протекающего по обмотке 18, управляют температурным режимом и скоростью сжигания твердых отходов.

Обмотка 18 закрыта пластиной 22 круглой формы с диаметром, равным внутреннему диаметру трубчатого корпуса 1, выполненной из тугоплавкого непроводящего ток материала и прикрепленной на внутренней части подвижной нижней крышки 6.

Для удаления остаточных продуктов после сжигания твердых отходов прекращают подачу плазмообразующего газа и отключают источники электропитания электродов 2 и 3, обмотки 10, и спирали 18 и открывают крышку 6 с помощью реверсивного привода 25. После удаления остаточных продуктов закрывают крышку 6 с помощью реверсивного привода 25.

Электроды 2 и 3, выполненные из проводящего материала, в процессе горения дуги подгорают и укорачиваются. Электроды могут быть выполнены, например из графита. Для поддержания постоянного расстояния между концами электродов 2 и 3, толкатели 12 и 13 осуществляет их продвижение в полость трубчатого корпуса по мере из подгорания. В устройствах 23 и 24 осуществляется удлинение электродов 2 и 3 путем механического наращивания укорачивающегося постепенно подгорающего электрода, например, с помощью токопроводящих зажимов, а также подсоединение наращенных концов электродов к блоку питания 4.

Электродуговой плазматрон для сжигания твердых отходов характеризуется простотой конструкции, обеспечивает регулирование мощности потока плазмы и подведение дополнительной регулируемой мощности за счет электрического нагрева спирали из проводящего тугоплавкого материала, что обеспечивает регулирование и стабилизацию температурных режимов и производительности установки. Выполненное с наклоном вниз положение электродов, а также смещение оси полюсов ниже уровня положения нижних концов электродов позволяет сильнее вытягивать дугу и приблизить дугу к верхнему уровню сжигаемых твердых отходов, что повышает эффективность действия плазмотрона.

Список литературы

1. А.с. СССР №599732. Электродуговой нагреватель газа постоянного тока / Жуков М.Ф., Лыткин А.Я., Худяков Г.Н., Аньшаков А.С. Опубл. 07.09.1982. Бюл. №33.

2. Патент РФ №2465748. Электродуговой плазмотрон / Мчедалов С.Г. Опубл 27.10.2012. Бюл. №30.

3. Патент на полезную модель №188618. Электродуговой плазмотрон / Мещеряков В.Н., Евсеев A.M., Пикалов В.В., Чупров В.Б., Конев В.А. Опубл. 18.04.2019. Бюл. №11.

Электродуговой плазмотрон для сжигания твердых отходов, содержащий вертикально установленный трубчатый корпус, герметично закрытый с торцов крышками, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную камеру, в верхней крышке трубчатого корпуса выполнены окно для подачи сжигаемых материалов, герметично закрытое заглушкой, а также отверстие для отвода газообразных продуктов горения, в трубчатом корпусе выполнены два расположенных друг против друга отверстия, в которых установлены анодный и катодный электроды, подключенные к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, соосно с трубчатым корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью трубчатого корпуса расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, ось полюсов расположена перпендикулярно по отношению к электродам, в трубчатом корпусе выше уровня расположения горящей дуги выполнены отверстия, наклоненные вниз в направлении расположения нижней точки горения дуги, которые соединены с узлом подачи рабочего плазмообразующего газа, отличающийся тем, что отверстия в трубчатом корпусе для установки электродов выполнены с наклоном вниз в направлении к точке пересечения оси трубчатого корпуса с максимально допустимым уровнем сжигаемых твердых отходов, верхний край полюсов находится на одном уровне с нижними концами электродов, на внутренней поверхности нижней крышки трубчатого корпуса размещена спиралевидная обмотка из проводящего тугоплавкого неизолированного материала, концы которой выведены через отверстия, выполненные в нижней крышке, и подключены к еще одному регулируемому источнику электроэнергии, сверху обмотка закрыта пластиной из непроводящего тугоплавкого материала, прикрепленной к нижней крышке, нижняя крышка выполнена подвижной и соединена с реверсивным приводом ее открывания и закрывания, части электродов, находящиеся вне трубчатого корпуса, соединены с реверсивными толкателями и устройствами их наращивания.



 

Похожие патенты:

Изобретение относится к получению плазмы, а именно к устройствам для генерирования плазмы с использованием внешних электромагнитных полей и может применяться для ионно-плазменной обработки поверхностей различных материалов.

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги.

Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и, в частности, в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов.

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности.

Изобретение относится к плазменной технике и может быть использовано, например, в качестве импульсного источника электромагнитного излучения и направленных потоков заряженных частиц.

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к получению порошка металлов, сплавов и металлических соединений из проволоки. Плазменно-дуговой реактор содержит корпус, первый электрод и размещенный на расстоянии от него второй электрод, причем первый электрод выполнен с каналом, выпускное отверстие которого выходит в пространство между первым и вторым электродами, средство для формирования плазменной дуги в пространстве между первым и вторым электродами, средство для подачи проволоки через упомянутое выпускное отверстие канала в пространство между первым и вторым электродами и камеру пассивирования, выполненную с возможностью подачи в нее паров проволоки и размещенную с образованием кольцевой щели с поверхностью корпуса для ввода газа.

Изобретение относится к соплам для головки плазменно-дуговой горелки с жидкостным охлаждением. Сопло включает корпус с общей осевой длиной L, внутренней поверхностью и внешней поверхностью, с передним и задним концами и с отверстием сопла на переднем конце, причем внешняя поверхность корпуса, исходя от заднего конца, имеет по существу цилиндрический первый участок с осевой длиной L1, на котором на заднем конце корпуса находится простирающая, преимущественным образом, в окружном направлении канавка для кольца круглого сечения или с расположенным в ней кольцом круглого сечения, которая в направлении заднего конца корпуса ограничена выступом, который задает внешний диаметр D11 корпуса, а на переднем конце находится центрирующая поверхность для держателя сопла, которая задает внешний диаметр D12 корпуса, и примыкающий к нему в направлении переднего конца второй участок, который задает осевую упорную поверхность для держателя сопла на границе с первым участком, которая задает внешний диаметр D21 корпуса и по меньшей мере на частичном участке по существу конусообразно сужается к переднему концу корпуса.

Изобретение относится к плазмотрону для наплавки металлического порошка. Плазмотрон содержит защитное электрически нейтральное сопло с патрубком для подачи присадочного порошка, плазменное сопло с патрубком для подачи газа, соединенное с положительным полюсом источника питания постоянного тока, электрод, установленный внутри плазменного сопла и соединенный с отрицательным полюсом источника питания постоянного тока.

Изобретение относится к области генерации низкотемпературной неравновесной аргоновой плазмы при атмосферном давлении, может быть использовано для стерилизации/дезинфекции медицинского инструмента и принадлежностей, обеззараживания микроорганизмов (бактерий, спор, патогенной микрофлоры), в частности, при хранении, сушке, предпосевной обработке продукции сельского хозяйства (семян, овощей, фруктов, кормовых смесей).

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к области плазменной техники. Система охлаждения высоковольтного электродугового плазмотрона содержит в одном варианте три электродных узла, каждый из которых содержит цилиндрический полый электрод с катушкой, три составных металлических патрубка, образующих три дуговых канала, каждый из которых соединен с соответствующим полым электродом через изолирующую втулку, а металлические патрубки каждого дугового канала соединены между собой посредством дополнительной изолирующей втулки.

Изобретение относится к области плазменной техники. .

Изобретение относится к области электротермической техники, а именно к устройствам плазменно-дуговых сталеплавильных печей. Плавильный плазмотрон включает водоохлаждаемый корпус, каналы для подачи плазмообразующего газа, расположенные параллельно оси плазмотрона и соединенные с вертикально расположенным водоохлаждаемым соплом, электрическую изоляцию, электрическую сеть, вольфрамовый электрод-катод, электрододержатель.

Изобретение относится к области плазменной техники, а именно к конструкции плазмотронов, применяемых в металлургической промышленности в качестве источника нагрева.

Изобретение относится к специальной электрометаллургии и может быть использовано при вакуумно-дуговой гарнисажной плавке металлов, например титана и его сплавов. .

Изобретение относится к машиностроению, в частности к плазменной технике, и может быть использовано в установках для плазменно-дуговой резки металла. .

Изобретение относится к машиностроению, а именно к устройствам охлаждения и защиты элементной базы электронной техники, в том числе микропроцессорной, а также деталей и узлов машин.

Изобретение относится к технологии плазменной обработки материалов и изделий, в частности к электродуговым плазматронам, предназначенным для напыления порошковых материалов, включая тугоплавкие материалы, на поверхности изделий с целью получения покрытий различного функционального назначения.

Настоящее описание относится к области химической промышленности и, в частности, к устройству для обработки отработанной кислоты после алкилирования. Способ обработки отработанной серной кислоты после алкилирования, включающий следующие стадии: стадия I: сжигание восстановительных кислотных газов и отработанной серной кислоты после алкилирования в атмосфере, содержащей кислород, с получением сернистых хвостовых газов; стадия II: понижение температуры сернистых хвостовых газов для охлаждения газообразного элементарного вещества серы, содержащегося в сернистых хвостовых газах, до жидкого элементарного вещества серы и выделение из них указанного жидкого элементарного вещества серы; и стадия III: превращение серосодержащих соединений, содержащихся в газах, полученных на стадии II, в элементарное вещество серу и выделение указанного элементарного вещества серы из газов; где превращение осуществляют в группе конвертеров, содержащей: конвертер первой ступени, последовательно заполненный защитным слоем катализатора, содержащим оксид молибдена и/или оксид никеля в качестве активного компонента, первым слоем катализатора для регенерации серы, содержащим оксид алюминия в качестве активного компонента, вторым слоем катализатора для регенерации серы, содержащим TiO2 и Al2O3 в качестве активных компонентов и соль железа и/или силикат в качестве добавки, и распределительным слоем, образованным из фарфоровых шариков и металлической сетки; причем защитный слой катализатора, первый слой катализатора для регенерации серы и второй слой катализатора для регенерации серы составляют 5-30%, 0-90% и 5-95% по объему защитного слоя катализатора, первого слоя катализатора для регенерации серы и второго слоя катализатора для регенерации серы, соответственно; и вторичный конвертер, заполненный первым слоем катализатора для регенерации серы, где первый слой катализатора для регенерации серы используют для превращения SO2, H2S и органической серы, содержащихся в хвостовых газах, в элементарное вещество серу, и второй слой катализатора для регенерации серы используют для превращения SO2, H2S и органической серы в элементарное вещество серу и для разложения SO3 до SO2 и O2.
Наверх