Способ определения времени максимальной концентрации фотосенсибилизатора хлорин е6 лизин димеглюминовая соль в опухоли


A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2713941:

Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр радиологии" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ радиологии" Минздрава России) (RU)

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора (ФС) хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения. В организм вводят ФС хлорин е6 лизин димеглюминовая соль. Через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма. При флуоресцентной контрастности опухоль/норма до 3,0 включительно максимальным уровнем накопления ФС в опухоли считают 3 часа от момента введения ФС, при флуоресцентной контрастности опухоль/норма более 3,0 - 4 часа. Способ позволяет повысить эффективность лечения за счет возможности индивидуального определения времени максимального накопления ФС хлорин е6 димеглюминовая соль в опухоли. 3 пр.

 

Изобретение относится к области медицины, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора (ФС) хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения, что в свою очередь необходимо для определения времени начала фотодинамической терапии (ФДТ) с его использованием.

Метод ФДТ основан на использовании препаратов - ФС, которые при введении в организм накапливаются преимущественно в опухоли. После введения ФС в организм и достижения его максимального накопления в тканях, осуществляют облучение патологического участка, главным образом посредством лазерного излучения. При этом молекулы ФС катализируют образование цитотоксических агентов, в частности синглетного кислорода, разрушающих опухолевые клетки. Для получения наиболее выраженного положительного эффекта необходимо проводить ФДТ в срок максимального накопления ФС в опухолевой ткани.

Эффективность ФДТ во многом зависит от правильного выполнения методики лечения, одной из важных составляющих которой является правильный выбор оптимального интервала времени между введением ФС и проведением сеанса лазерного облучения. Данный интервал характеризуется показателем максимального накопления ФС в опухоли. Время максимального накопления ФС в опухоли может варьировать в зависимости от особенностей метаболизма организма и биораспределения фотосенсибилизатора, которые являются индивидуальными для конкретного больного. В связи с чем нередко на практике выбранный интервал при проведении 1 и 2 фаз клинических испытаний ФС на определенной группе больных, в последующем может не являться оптимальным у других больных. Для решения этой проблемы разработаны методики определения почасовой кинетики времени максимального накопления фотосенсибилизатора в опухоли у каждого больного. Однако такого рода методы являются высокозатратной процедурой, как финансово, так и по уровню трудозатрат.

Известен способ определения накопления ФС в ткани опухоли (Морозова Н.Б. «Экспериментальное изучение нового фотосенсибилизатора «Фталосенс» для фотодинамической терапии злокачественных новообразований». Автореф. дисс. на соискание уч. ст. к.б.н., М., 2007). В работе изучали кинетику распределения фотосенсибилизатора путем измерения флуоресценции в опухолевых и нормальных тканях на различные сроки после введения препарата после умерщвления животных (мышей). Таким образом, у каждого животного измерения проводили только один раз на определенный срок после введения фотосенсибилизатора. Таким образом, приемы изучения фотосенсибилизатора, представленные в данной работе нельзя использовать в клинической онкологии.

Наиболее близким является способ определения оптимальных режимов флуоресцентной диагностики и фотодинамической терапии (RU 2376044, Филоненко Е.В., Чиссов В.И., Соколов В.В., Якубовская Р.И.). В работе авторы определяли кинетику тканевого распределения различных ФС методом локальной флуоресцентной спектроскопии.

Существенным недостатком данного способа является то, что, во-первых, изучение кинетики подразумевает почасовые изменения уровня накопления ФС в тканях опухоли на протяжении 7-8 часов, что неприменимо в повседневной клинической практике. Во-вторых, т.к. в данной методике не были учтены показатели флуоресцентной контрастности, т.е. невозможно определить точное время максимального накопления ФС в опухоли. В связи с этим, полученные данные описывают только диапазон времени, в котором могут быть достигнуты максимальные значения накопления ФС в опухоли, а не конкретное время.

В настоящее время перспективным направлением медицины является персонализированное лечение, учитывающее особенности конкретного больного с целью повышения эффективности и достижения наилучших результатов.

Таким образом, решаемой нами технической проблемой было индивидуальное определение оптимального интервала времени между введением фотосенсибилизатора и проведением сеанса лазерного облучения, т.е. времени максимального накопления ФС хлорин е6 лизин димеглюминовая соль в опухоли.

В качестве ФС нами исследовались препараты хлоринового ряда, в частности, хлорин е6 лизин димеглюминовая соль (ХМЛ). Данный препарат имеет высокую скорость выведения из нормальных тканей, обеспечивает глубокое терапевтическое воздействие на опухолевые ткани, нетоксичен и перспективен для применения в онкологии.

Технический результат достигается тем, что в организм вводят фотосенсибилизатор хлорин е6 лизин димеглюминовую соль и через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма:

- до 3,0 включительно - 3 часа,

- от 3,0 и более - 4 часа.

Способ осуществляют следующим образом.

В организм вводят ФС хлорин е6 лизин димеглюминовую соль. Через 30 мин после введения ФС, определяют оптимальное время проведения сеанса лазерного облучения, далее вычисляют величину флуоресцентной контрастности опухоль/норма (например, Лукин В.В. Лапароскопическая флуоресцентная диагностика перитонеальной диссеминации злокачественных новообразований. Автореферат диссертации на соискание ученой степени к.м.н., Москва, 2010), измеренной через 30 мин после введения ФС.

При внутривенном введении ФС происходит его циркуляция в системном кровотоке. При этом, необходимо время для достижения в опухоли определенной концентрации ФС, которая будет характеризовать скорость и кинетику накопления ФС в последующем. Таким временем является 30 мин от момента введения ФС, т.к. за это время происходит циркуляция крови через опухоль в достаточном объеме.

При флуоресцентной контрастности до 3,0 включительно, оптимальный интервал между введением ФС и сеансом лазерного облучения (максимальный уровень накопления ФС в опухоли) составляет 3 ч. При флуоресцентной контрастности более 3,0 - 4 ч.

Предложенный способ был апробирован при проведении исследований in vivo на перевивных опухолях у животных. В качестве ФС хлоринового ряда вводили ХМЛ в дозе 12,0 мг/кг.

Флуоресцентную контрастность измеряли по следующей методике.

Регистрацию флуоресценции ХМЛ в опухоли и здоровых окружающих тканях мышей проводили через различные интервалы времени контактным способом на лазерном спектральном анализаторе для флуоресцентной диагностики опухолей и контроля за ФДТ «ЛЭСА-06» (ЗАО «Биоспек», Россия). Для чего возбуждали флуоресценцию излучением He-Ne лазера (длина волны генерации 632,8 нм, спектральный диапазон измерений 640-900 нм). Математическую обработку спектров флуоресценции проводили с помощью программы «ЛЭСА-06». При возбуждении флуоресценции в красной области спектра интегральную интенсивность флуоресценции в диапазоне 645-680 нм нормировали на интегральную интенсивность сигнала обратного диффузного рассеяния в ткани возбуждающего лазерного излучения (λ=632,8 нм).

Флуоресцентную контрастность рассчитывали, как отношение нормированной флуоресценции в опухоли к нормированной флуоресценции в окружающей ткани (кожа).

Оптимальное время проведения сеанса лазерного облучения определяли по величине флуоресцентной контрастности опухоль/норма, измеренной через 30 мин после введения ХМЛ (далее флуоресцентной контрастности).

При флуоресцентной контрастности до 3,0 включительно, оптимальный интервал между введением ФС и сеансом лазерного облучения (максимальный уровень накопления ХМЛ в опухоли) составляет 3 ч; а более 3,0-4 ч.

Пример 1.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 2,2, что позволяет определить максимальный уровень накопления ФС в опухоли - через 3 часа от момента введения ФС.

Для подтверждения данного факта, далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,1 усл. ед.,

через 2 часа - 2,9 усл. ед.,

через 3 часа - 4,1 усл. ед.,

через 4 часа - 3,6 усл. ед.,

через 5 часов - 3,2 усл. ед.,

через 6 часов - 2,7 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 3 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 2 и 4 часа после введения ФС интенсивность флуоресценции в опухоли составила на 29% и 12% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно. При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 2,2 (менее 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 3 часа. Сеанс ФДТ провели через 3 часа после введения ХМЛ, в результате чего у мыши была достигнута полная регрессия опухоли (значения торможения роста опухоли (ТРО) составили 100% на протяжении 21 наблюдения дня после проведения ФДТ).

Пример 2.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 4,2, что позволяет определить максимальный уровень накопления ФС в опухоли - через 4 часа от момента введения ФС.

Для подтверждения данного факта далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,4 усл. ед,

через 2 часа - 3,3 усл. ед.,

через 3 часа - 3,7 усл. ед.,

через 4 часа - 4,3 усл. ед.,

через 5 часов - 3,2 усл. ед.,

через 6 часов - 2,6 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 4 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 3 и 5 часа после введения ФС интенсивность флуоресценции в опухоли составила на 14% и 26% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно. При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 4,2 (более 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 4 часа. Сеанс ФДТ провели через 4 часа после введения ХМЛ, в результате чего у мыши была достигнута полная регрессия опухоли (значения ТРО составили 100% на протяжении 21 дня наблюдения после проведения ФДТ).

Пример 3.

Спектрофотометрическое обследование проведено у мыши F1 (C57Bl/6j × СВА), самки, с привитой саркомой S37. Мыши введен раствор ХМЛ в дозе 12,0 мг/кг.

Флуоресцентная контрастность, измеренная через 30 минут после введения раствора ФС, составила 4,3, что позволяет определить максимальный уровень накопления ФС в опухоли - через 4 часа от момента введения ФС.

Далее каждый час регистрировали интенсивность нормированной флуоресценции ХМЛ в опухоли, которая составила:

через 1 час после введения фотосенсибилизатора 2,2 усл. ед,

через 2 часа - 2,6 усл. ед.,

через 3 часа - 3,5 усл. ед.,

через 4 часа - 4.4 усл. ед.,

через 5 часов - 3,3 усл. ед.,

через 6 часов - 3,0 усл. ед.

Таким образом, максимальная интенсивность флуоресценции ХМЛ, соответствующая максимальному накоплению ФС в опухоли, была достигнута через 4 часа после введения ФС, что соответствовало предварительно определенной величине флуоресцентной контрастности.

На сроках 3 и 5 часа после введения ФС интенсивность флуоресценции в опухоли составила на 21% и 25% меньше, чем в срок максимального накопления фотоактивной формы ФС в опухоли, соответственно.

При величине флуоресцентной контрастности через 30 мин после введения ХМЛ 4.3 (более 3,0), время достижения максимальной интенсивности флуоресценции ХМЛ в опухоли составило 4 часа.

Однако сеанс ФДТ провели в иное чем выявленное предварительно время, а именно через 3 часа после введения ХМЛ, в результате чего у мыши была достигнута только частичная регрессия опухоли (значения ТРО составили 83-91%) на протяжении 21 дня наблюдения после проведения ФДТ).

Таким образом, предложенный способ успешно апробирован на модели мышей-опухоленосителей и может быть экстраполирован и на людей, с учетом использования в исследованиях на животных дозы ХМЛ эквивалентной терапевтической дозе для человека, путем перерасчета по методу Freireich at al. Данное изобретение является научно-обоснованным и целесообразным к практическому применению.

Способ определения времени максимальной концентрации фотосенсибилизатора хлорин е6 лизин димеглюминовая соль в опухоли, включающий введение в организм ФС хлорин е6 лизин димеглюминовая соль, через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухоль/норма, при флуоресцентной контрастности опухоль/норма до 3,0 включительно максимальным уровнем накопления ФС в опухоли считают 3 часа от момента введения ФС, при флуоресцентной контрастности опухоль/норма более 3,0 - 4 часа.



 

Похожие патенты:

Изобретение относится к медицине, а именно к онкологии и может быть использовано для персонализированного лечения больных раком желудка на основе панели молекулярно-генетических маркеров.

Изобретение относится к биохимии и медицине. Предложен способ лечения субъекта с раком толстого кишечника или раком легких, где раковые клетки экспрессируют теломеразу и характеризуются избыточной активацией теломеразы.

Изобретение относится к медицине, а именно к онкологии и челюстно-лицевой хирургии, и может быть использовано для лечения начальных стадий рака полости рта и губы при глубине инвазии не более 7 мм.
Изобретение относится к медицине, а именно к онкологии, урологии, и может быть использовано в способе комбинированного лечения мышечно-инвазивного рака мочевого пузыря Т3-Т4 N0-+M0, включающем проведение неоадъюватной химиотерапии по схеме - цисплатин 75 мг/м2 и гемцитабин - 1000 мг/м2 в 1-й день с повтором через каждый 21 день.

Изобретение относится к новому соединению формулы (I) или его фармацевтически приемлемой соли. Соединения обладают свойствами ингибитора Akt киназы, Rsk киназы или S6K киназы и могут быть использованы в качестве противоопухолевого средства.

Предложено соединение формулы II где: X1 - CR7; X2 выбирается из группы, содержащей N и CR10; каждый из радикалов R1, R3 и R4 независимо выбирается из группы, содержащей -Н, галогены, замещенные или незамещенные алкилы с 1-8 атомами углерода, незамещенные циклоалкилы с 3-6 атомами углерода, -C(O)NRARB, -ORA, -NRARB, -S(O)2RA, незамещенный фенил и замещенный или незамещенный оксетан или пиперазин; R2 независимо выбирается из группы, содержащей -Н, галогены, замещенные или незамещенные алкилы с 1-8 атомами углерода, незамещенные циклоалкилы с 3-6 атомами углерода, -C(O)NRARB, -ORA, -NRARB, -S(O)2RA, замещенный или незамещенный фенил и незамещенный оксетан или пиперазин; каждый из радикалов R7, R10 и R11 независимо выбирается из группы, содержащей -Н и незамещенные алкилы с 1-8 атомами углерода; каждый из радикалов R5 и R6 независимо выбирается из группы, содержащей -Н, галогены и незамещенные алкилы с 1-8 атомами углерода; каждый из радикалов R8 и R9 независимо выбирается из группы, содержащей -Н и галогены; каждый из радикалов RA и RB при наличии независимо выбирается из группы, содержащей -Н, галогены, замещенные или незамещенные алкилы с 1-8 атомами углерода, замещенные или незамещенные циклоалкилы с 3-6 атомами углерода; в тех случаях, когда в качестве X1 выбран N, в качестве X2 выбран СН, а в качестве каждого из радикалов R1, R2, R3, R4, R8, R9 и R11 выбран водорода, заместители для замещенного алкила независимо выбраны из амино, алкиламино, алкокси, алкилсульфанил, оксо (=О), гало, ацил, нитро, гидроксил, циано, тион (=S) и имино; заместители для замещенного циклоалкила независимо выбраны из галогена и незамещенного алкила с 1-8 атомами углерода, или фармацевтически приемлемая соль для ингибирования активности тубулина.

Изобретение относится к биотехнологии. Предложено активируемое антитело, которое в активированном состоянии связывает рецептор эпидермального фактора роста (EGFR), включающее антитело, маскирующий фрагмент, который в нерасщепленном состоянии ингибирует связывание антитела с EGFR, и расщепляемый фрагмент, который функционирует в качестве субстрата для протеазы.

Изобретение относится к соединению формулы (I), в которой R означает C(O)-R1; R1 представляет собой линейную алкильную цепь, включающую от 2 до 5 атомов углерода; и R' означает линейную алкильную цепь, содержащую от 3 до 6 атомов углерода, или фенил; причем заместители R1 и R' не являются одинаковыми.

Изобретение относится к соединениям общей формулы I-IV, обладающим свойством ингибитора фермента PRMT5, их применению, фармацевтической композиции на их основе, способу лечения аномального роста клеток, в том числе различных видов рака.

Настоящее изобретение относится к области иммунологии. Предложена рекомбинантная клеточная линия PSCA-CAR-YT, обладающая поверхностной экспрессией химерных антигенных рецепторов и проявляющая цитотоксическую активность по отношению к PSCA-позитивным раковым клеткам человека.
Изобретение относится к области медицины, а именно к акушерству и гинекологии, и и может быть использовано для лазер-индуцированного лечения атрофии эндометрия. Проводят мониторинг накопления хлорофилл-содержащего препарата в эндометрии при помощи фотолюминесцентного спектрального анализа в точке 668 нм.
Изобретение относится к области медицины, а именно к акушерству и гинекологии, и и может быть использовано для лазер-индуцированного лечения атрофии эндометрия. Проводят мониторинг накопления хлорофилл-содержащего препарата в эндометрии при помощи фотолюминесцентного спектрального анализа в точке 668 нм.

Изобретение относится к медицине, в частности к кардиохирургии. В полость правого желудочка вводят источник света - трансиллюминатор с уровнем локальной освещенности 12000-12500 Лк, который вплотную прилегает к межжелудочковой перегородке.

Изобретение относится к медицине, а именно к онкологии и челюстно-лицевой хирургии, и может быть использовано для лечения начальных стадий рака полости рта и губы при глубине инвазии не более 7 мм.

Изобретение относится к медицине, а именно к онкологии и челюстно-лицевой хирургии, и может быть использовано для лечения начальных стадий рака полости рта и губы при глубине инвазии не более 7 мм.
Изобретение относится к медицине, а именно к хирургии, травматологии и ортопедии, и может быть использовано для лечения больных перипротезной инфекцией после эндопротезирования сустава.
Изобретение относится к медицине, а именно к хирургии, травматологии и ортопедии, и может быть использовано для лечения больных перипротезной инфекцией после эндопротезирования сустава.

Изобретение относится к медицине, а именно к стоматологии, и может быть использовано для лечения хронического рецидивирующего афтозного стоматита. Предлагаемый способ лечения хронического рецидивирующего афтозного стоматита включает проведение физиотерапевтического воздействия и медикаментозную терапию.
Изобретение относится к дерматологии и косметологии и может быть использовано для лечения папуло-пустулезной формы acne vulgaris неодимовым лазером. На кожу воздействуют лазерным излучением с длиной волны 1064 нм, диаметром пятна от 3 до 6 мм, плотностью энергии от 25 до 35 Дж/см2, длительностью импульса от 0,3 до 1,6 мс.
Изобретение относится к дерматологии и косметологии и может быть использовано для лечения папуло-пустулезной формы acne vulgaris неодимовым лазером. На кожу воздействуют лазерным излучением с длиной волны 1064 нм, диаметром пятна от 3 до 6 мм, плотностью энергии от 25 до 35 Дж/см2, длительностью импульса от 0,3 до 1,6 мс.

Изобретение относится к области биохимии, в частности к грызуну для экспрессии модифицированного гена С3, геном которого содержит замену последовательности гена С3 грызуна в эндогенном локусе С3 грызуна на последовательность гена С3 человека с образованием модифицированного гена С3, а также к способу его получения, его эмбриону и клетке.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для определения времени достижения максимальной концентрации фотосенсибилизатора хлоринового ряда - хлорин е6 лизин димеглюминовая соль в тканях организма после его введения. В организм вводят ФС хлорин е6 лизин димеглюминовая соль. Через 30 мин после введения ФС вычисляют величину флуоресцентной контрастности опухольнорма. При флуоресцентной контрастности опухольнорма до 3,0 включительно максимальным уровнем накопления ФС в опухоли считают 3 часа от момента введения ФС, при флуоресцентной контрастности опухольнорма более 3,0 - 4 часа. Способ позволяет повысить эффективность лечения за счет возможности индивидуального определения времени максимального накопления ФС хлорин е6 димеглюминовая соль в опухоли. 3 пр.

Наверх