Способ получения альфа-алюмината лития

Изобретение относится к способу получения алюмината лития, пригодного для использования в производстве топливных элементов на основе расплавленных карбонатов, а также в ядерной технологии. Способ получения альфа-алюмината лития включает механическую активацию смеси карбоната лития с гидроксидом алюминия в форме гиббсита и термообработку смеси. Перед термообработкой смесь подвергают механической активации в шаровой мельнице в течение 2-4 часов, а термообработку проводят при температуре 625-650°С в течение 4-6 часов. Обеспечивается упрощение способа получения альфа-алюмината лития, снижение времени синтеза, получение готового продукта с фазовой чистотой выше 99% и удельной поверхностью более 10 м2/г. 1 табл., 14 пр.

 

Предложен твердофазный способ получения монофазного порошкообразного алюмината лития с содержанием α-фазы более 99% и удельной поверхностью более 10 м2/г, пригодного для использования в производстве топливных элементов на основе расплавленных карбонатов, а также в ядерной технологии.

Изобретение относится к производству неорганических соединений лития и алюминия и может быть использовано для изготовления загустителя для электролита в топливных элементах с расплавленным карбонатным электролитом и получения из этого порошка керамического материала, пригодного для использования в ядерной технологии.

Известен способ получения α-алюмината лития [1. Lehmann Н.А., Hesselbarth Н. Uber eine neue Modifikation des LiAlO2 // Zeit. Annorg. Allg. Chem. 1961. N313. P.117-124], основанный на смешивании оксида алюминия карбоната лития с карбонатом лития с последующей термической обработкой смеси в течение 86 часов при температуре 600°С Недостаток метода - длительность процесса, низкая удельная поверхность образующегося материала, требующая его дополнительного измельчения. Известен способ получения α-алюмината лития путем смешения бемита с карбонатом лития с последующей термической обработкой смеси при 600 С в течение 30 часов [2. Poeppelmeier K.R., Chiang С.К., Kipp D.O. Synthesis of high surface area α-LiAlO2 // Inorg. Chem. 1988. 27 (25). P. 4523-4524]. Недостаток метода - длительность процесса и низкая удельная поверхность материала, ниже 5 м2/г.

Наиболее близким к заявленному по технической сущности и достигаемому эффекту является способ получения порошкообразного альфа-алюмината лития с удельной поверхностью равным или более 10 м2/г [3. Choi H.J., Lee J.J., Hyun S.H., Lim H.C. Cost-effective synthesis of α-LiAlO2 powders for molten carbonate fuel cell matrices // Fuel cells. 2009. No. 5. P. 605-612.]. В ней для синтеза материала смесь гиббсита и карбоната лития предварительно диспергировали в водной среде в течение 3-х часов в шаровой мельнице, далее ее высушивали в течение одного дня при 110°С, высушенную смесь нагревали на воздухе при 600, 700 and 800°С в течение 24 часов. В результате процесса получали монофазный α- LiAlO2 с удельной поверхностью 11.45, 8.83, 7.94 м2/г.Недостаток указанного способа - многостадийность и длительность процесса.

Задача, решаемая заявляемым техническим решением, заключается в сокращении времени синтеза и упрощении способа получения альфа-алюмината лития из карбоната лития и гиббсита, позволяющего получать алюминат лития с характеристиками, позволяющими использовать его в качестве материала матричного электролита карбонат расплавленного топливного элемента.

Поставленная задача решается тем, что для получения высокодисперсного α-LiAlO2 смесь гиббсита и карбоната лития с необходимым соотношением реагентов подвергается механической обработке в шаровой мельнице в течение от 2 до 4 часов. Механически активированная смесь подвергается последующей термической обработкой на воздухе при температурах от 625 до 650°С и времени от 4 до 6 часов. Фазовый состав целевого продукта определяют с помощью рентгенофазового анализа (дифрактометр D8 Advance, CuKα излучение). Удельную поверхность измеряют путем адсорбции-десорбции аргона по методу БЭТ после тренировки образца в потоке инертного газа при 100°С.

Существенными отличительными признаками заявляемого технического решения являются:

- смешивают гидроксид алюминия и карбонат лития в атомном отношении, необходимом для образования моноалюмината лития,

- полученную смесь подвергают механической обработке в шаровой мельнице в течение от 2 до 4 часов,

- полученный после механической обработки продукт подвергают термической обработке в интервале температур от 625 до 650°С и времени от 4 до 6 часов.

Как было нами выявлено, при нагревании не активированной смеси гиббсита и карбоната лития до 550-600°С происходит разложение гиббсита с образованием смеси кристаллических оксидов алюминия, которые при температуре 600°С и выше реагируют с карбонатом лития с образованием α-LiAlO2. Образующиеся при разложении гиббсита оксиды алюминия образуют псевдоморфозу по исходным кристаллам гиббсита, которые имеют размеры, варьирующиеся преимущественно в интервале от 40 до 150 мкм при среднем размере 60 мкм. Скорость реакции взаимодействия между карбонатом лития и оксидами алюминия лимитируется диффузией через слой алюмината лития, образующегося в области контакта карбоната лития и оксида алюминия, т.е. на поверхности частиц оксидов алюминия. Из-за значительного размера частиц оксидов и диффузионного характера взаимодействия для полного взаимодействия между реагентами необходимы большие времена (десятки часов). Это приводит к тому, что при технологически приемлемых временах термической обработки помимо α-LiAlO2 присутствуют не прореагировавшие реагенты: карбонат лития и оксиды алюминия. Повышение температуры процесса выше 700°С, хоть и ускоряет процесс взаимодействия между реагентами, однако одновременно вызывает процесс фазового перехода альфа-формы в ее высокотемпературную разновидность - гамма-форму. Это приводит к загрязнению целевого продукта- α-LiAlO2 примесью гамма-моноалюмината лития. Механическая обработка смеси гиббсита и карбоната лития в шаровой мельнице приводит к уменьшению среднего размера частиц реагентов, в том числе и гиббсита, от 60 мкм до микронных и менее размеров, в зависимости от времени механической активации. Уменьшение размера частиц гидроксида алюминия приводит к уменьшению размера частиц оксидов алюминия, образующихся при разложении гиббсита и, как следствие, к увеличению скорости взаимодействия между карбонатом лития и оксидом алюминия. В результате этого содержание примеси не прореагировавших карбоната лития и оксида алюминия в образующемся α-LiAlO2 существенно снижается. Однако процесс измельчения реагентов не может превышать некоторой пороговой величины, так как процесс измельчения гиббсита и карбоната лития сопровождается одновременной аморфизацией этих веществ. Так, по нашим данным, прирост удельной поверхности на 1 м2/г сопровождается увеличением степени аморфизации гиббсита примерно на 3%. Образующийся при активации смеси рентгеноаморфный гидроксид алюминия при нагревании образует рентгеноаморфный оксид алюминия, который, который как было показано нами ранее, реагирует с карбонатом лития с образованием γ-LiAlO2 даже в области стабильности α-LiAlO2. Таким образом, для получения α-LiAlO2 без примеси карбоната лития, оксидов алюминия и высокотемпературной формы моноалюмината лития γ-LiAlO2 необходимо, чтобы на этапе механической активации смеси удельная поверхность варьировалась от 1,5 до 4 м2/г. Такие параметры достигаются при активации смеси гиббсита и карбоната лития в шаровой мельнице в течение от 2 до 4 часов. Температура термической обработки должна варьироваться от 625 до 650°С.

Примеры 1-5 иллюстрируют влияние времени механической обработки на свойства целевого продукта. Для получения α-LiAlO2 готовят шихту из (68%) гидроксида алюминия (гиббсита) и (32%) карбоната лития, стехиометрически необходимых для получения алюмината лития. Для механической обработки смеси использовали лабораторную шаровую мельницу. Активацию проводили в фарфоровых барабанах объемом 1 л фарфоровыми шарами диаметром 15 мм при угловом вращении барабанов 120 об/мин. Масса шаровой загрузки составляла 500 г, масса смеси - 50 граммов. Время активации варьировали от 1 до 6 часов. После активации образцы подвергали термической обработке в электропечи при 650°С в течение 4 часов. Результаты рентгенофазового анализа полученного продукта свидетельствуют о том, что в отсутствии механической активации образуется алюминат лития α-модификации с примесью карбоната лития и с удельной поверхностью 25 м2/г (пример 1). Увеличение времени механической активации до 1 ч (пример 2) привело также к получению α-модификации с примесью карбоната лития. Дальнейшее увеличение времени активации до 2 и 4 часов (примеры 3 и 4) позволило получить монофазный α-LiAlO2 с удельной поверхностью 10 и 12 м2 г, соответственно. Увеличение времени активации до 6 часов (пример 5) приводит к образованию α-LiAlO2 с примесью γ-LiAlO2

Примеры 6-9 иллюстрируют влияние температуры термической обработки на свойства целевого продукта. Для эксперимента были использованы образцы, полученные при механической активации в течение 2 часов. Вариация температуры осуществлялась в интервале от 600 до 700°С. Как видно из примеров, приведенных в таблице, для синтеза монофазного α-LiAlO2 необходим нагрев в интервале температур от 625 до 650°С при времени термической обработки от 4 до 6 часов.

Примеры 10-14 характеризуют влияние времени термической обработки на синтез альфа-алюмината лития. Для исследования влияния времени термической обработки были использованы образцы после механической активации смеси в течение 2 часов, температура термической обработки составляла 650°С. Из этих примеров видно, что для синтеза необходима термическая обработка в интервале от 4 до 6 часов. Уменьшение времени термической обработки до 2 часов приводит к появлению примеси карбоната лития. Увеличение времени термической обработки более 6 нецелесообразно из-за появления примеси гамма-алюмината лития.

Таким образом, предлагаемый метод позволил получить однофазный алюминат лития альфа-модификации с чистотой выше 99% и с удельной поверхностью в интервале 10-18 м2/г.

Техническим результатом изобретения является упрощение технологического процесса получения высокодисперсного альфа-алюмината лития за счет устранения стадии измельчения смеси реагентов в жидкой среде и последующей сушки пульпы, сокращение общего времени процесса синтеза алюмината в 3 раза, снижение энергозатрат за счет устранения процесса сушки пульпы и сокращения времени, необходимого для прокаливания смеси гиббсита и карбоната лития, в 4 раза.

Способ получения альфа-алюмината лития, включающий механическую активацию карбоната лития с гидроксидом алюминия в форме гиббсита, термообработку смеси, отличающийся тем, перед термообработкой смесь подвергают механической активации в шаровой мельнице в течение 2-4 часов, а термообработку проводят при температуре 625-650°С в течение 4-6 часов.



 

Похожие патенты:
Изобретение относится к цветной металлургии. Способ переработки бокситов на глинозем по параллельной схеме Байер-спекание включает ветвь Байера и ветвь спекания.

Изобретение относится к области гидрометаллургии и может быть использовано при переработке высококалиевого нефелин-полевошпатового сырья, в качестве которого используют сынныриты.

Изобретение относится к способу получения адсорбента для осушки содержащих влагу газов. Для получения адсорбента продукт центробежной термической активации гидраргиллита (ЦТА ГГ) в щелочном растворе, сушат, размалывают, пептизируют и пластифицируют в растворе азотной кислоты, формуют полученную пасту методом экструзии, сушат и прокаливают в токе осушенного воздуха.

Изобретение может быть использовано при получении катализаторов для обработки выхлопных газов двигателей. Способ получения улавливающего NOx материала носителя катализатора включает получение первой суспензии, содержащей предшественник гомогенного смешанного оксида Mg/Al, и сушку первой суспензии.

Изобретение может быть использовано при переработке низкосортного высококремнистого алюмосодержащего сырья. Для получения металлургического глинозема каолиновые глины выщелачивают в автоклаве соляной кислотой в течение 60-180 мин при температуре 130-190°C.

Изобретение относится к получению ряда сухих продуктов на основе хлорида алюминия. Продукты на основе гидроксохлорида алюминия содержат измельченные частицы гидроксохлорида алюминия в кристаллической форме.

Изобретение может быть использовано при создании протонообменных мембран, применяемых в топливных элементах на основе водорода. Композитный протонопроводящий материал имеет состав xCs4(HSO4)3(H2PO4)-(1-х)AlPO4, где х=0,5-0,9.
Изобретение относится к области получения дейтеридов металлов для применения в качестве селективного восстановителя в органическом синтезе, для дейтерирования лекарственных препаратов с целью последующего использования в медицине и фармацевтике.

Изобретение относится к технологии получения соединений сложных оксидов со структурой граната, солегированных редкоземельными элементами, которые могут быть применены в технологии синтеза оптических керамических материалов лазерного качества при создании активных тел твердотельных лазеров различной геометрии.

Изобретение может быть использовано при получении алюминиевого коагулянта, применяемого в области водоподготовки. Для получения гидроксохлорсульфата алюминия сернокислую соль алюминия в виде кристаллогидрата - сульфата алюминия Al2(SO4)3⋅18H2O или алюминиевых квасцов R2SO4⋅Al2(SO4)3⋅24H2O, где R - К или NH4+, обрабатывают газообразным аммиаком.

Изобретение относится к области неорганической химии, а именно к установкам для получения водорода и гидроксидов алюминия. Установка содержит бак, в котором в воде располагаются реакционные колбы, выполненный с двумя штуцерами для входа холодной и вывода нагретой воды.

Изобретение относится к области неорганической химии, а именно к установкам для получения водорода и гидроксидов алюминия. Установка содержит бак, выполненный с двумя штуцерами для входа холодной и вывода нагретой воды.

Изобретение может быть использовано при переработке глиноземсодержащего сырья. Способ упаривания алюминатных растворов включает упаривание слабых растворов в две стадии с использованием для нагрева пара и подачу упаренного раствора на выделение карбонатной соды.
Изобретение относится к области металлургии, в частности к способу получения алюмината кобальта, применяемого для поверхностного модифицирования литых деталей из жаропрочных сплавов.

Изобретение относится к переработке сподуменового концентрата. .
Изобретение относится к производству неорганических соединений лития и алюминия и может быть использовано для изготовления загустителя для электролита в топливных элементах с расплавленным карбонатным электролитом и получения из этого порошка керамического материала, пригодного для использования в ядерной технологии.

Изобретение относится к синтезу мелкокристаллического легированного алюмината лантана, используемого в качестве огнеупоров, катализаторов и люминофоров. .

Изобретение относится к способам упаривания растворов в многокорпусных выпарных установках и может быть использовано в глиноземном производстве. .

Изобретение относится к получению нового неорганического соединения - -алюмината лития состава Li1+xAl1-xO2-x , где 0,01х0,75, который может быть использован в качестве диэлектрического материала в производстве химических источников тока, лития и др., а также к способу получения лития с использованием предлагаемого -алюмината лития.
Изобретение относится к производству неорганического соединения лития и алюминия, которое может быть использовано для изготовления электролитических пластин топливных элементов с карбонатным электролитом и получения из этого порошка керамического материала, пригодного для использования в ядерной технологии.
Наверх