Способ получения порошков диоксида циркония со сфероидальной формой частиц



Способ получения порошков диоксида циркония со сфероидальной формой частиц
Способ получения порошков диоксида циркония со сфероидальной формой частиц
C25B1/20 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2714452:

ООО "Т-Сфера" (RU)

Изобретение относится к золь-гель технологии получения материалов на основе диоксида циркония со сфероидальной формой частиц. Может использоваться при получении порошков для плазменного напыления, горячего и холодного прессования, лазерного спекания. Готовят водный раствор водорастворимых солей циркония, вводят в него водорастворимые соли металлов, выбранных из числа скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов. Готовят раствор-осадитель путем растворения гидроксидов щелочных металлов или аммиака в воде, проводят осаждение гидратированного оксида циркония путем дозирования общего раствора солей металлов в реакционный объем, в котором поддерживается перемешивание и постоянное значение рН из диапазона значений от 4 до 6 включительно за счет контролируемого введения раствора-осадителя. Отделяют образовавшийся осадок, сушку и термообработку. Обеспечивается получение узкофракционированных порошковых материалов при сокращении стадий процесса. 6 з.п. ф-лы, 3 ил., 7 пр.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к технологии получения оксидных материалов, в частности к технологии получения порошков на основе диоксида циркония со сфероидальной формой частиц, которые могут быть использованы для получения керамики, покрытий, сорбентов и катализаторов.

УРОВЕНЬ ТЕХНИКИ, ПРЕДШЕСТВУЮЩИЙ ДАННОМУ ИЗОБРЕТЕНИЮ

Диоксид циркония широко используется при создании керамики и покрытий, сорбентов и катализаторов. Форма частиц является важной характеристикой порошковых материалов, зачастую определяющей возможность их использования в различных областях техники. Правильная форма частиц близкая к сферической обуславливает высокую сыпучесть порошковых материалов, высокую насыпную плотность, а также низкие гидро- и аэродинамические сопротивления частиц, поэтому задача формирования порошков диоксида циркония с правильной формой частиц является весьма актуальной.

Известным технологическим подходом для формирования частиц диоксида циркония с правильной формой является гранулирование золя циркония путем его диспергирования в жидкую среду. Так известен способ [Патент SU 1491561, приор. от 20.10.1987, опубл. 07.07.1989, МПК B01J20/06] получения сорбента на основе гидроксида циркония, включающий смешение раствора циркония с уротропином и мочевиной, капельное диспергирование раствора в слой водонерастворимой органической жидкости при температуре 85-950С, промывку полученных сферических гранул гидрогеля и их последующую термообработку. Недостатками способа являются необходимость использования в технологическом процессе дорогостоящих органических веществ, нагретых до высокой температуры, а также трудность получения порошков с узким распределением частиц по размерам на уровне 10-60 мкм.

Известен способ [Патент RU 2235686, приор. от 04.01.2003, опубл. 10.09.2004, МПК C01G25/02, C25B1/00, B01J20/06] получения сферогранулированных материалов на основе гидроксида и оксида циркония, включающий электролиз водного раствора на основе хлорида циркония при температуре 50-100°С с получением золя гидроксида циркония, диспергирование золя в гелирующую среду, отделение образовавшихся гельсфер, их отмывку, сушку и термообработку. Преимуществом описанного способа является возможность использовать в качестве гелирующей среды водного раствора аммиака или щелочи, которая обеспечивается за счет получения высоковязкого золя циркония на стадиях растворения карбоната и электролиза раствора. Существенными недостатками способа являются сложность и многостадийность процесса, необходимость работы с соляной кислотой, что обуславливает необходимость тщательной отмывки полученных гельсфер от остаточных ионов хлора, а также трудности получения порошков с узким распределением частиц по размерам на уровне 10-60 мкм.

Альтернативным подходом для формирования частиц диоксида циркония с правильной формой является электрооплавление частиц диоксида циркония. Известен способ [Патент US6893994, приор. от 13.08.2002, опубл. 19.02.2004, МПК C23C-004/10] формирования химически однородных частиц диоксида циркония, включающий в себя электроплавление диоксида циркония, охлаждение диоксида циркония и термическую обработку полученного порошка. Технический результат – формирование преимущественно сферических полых частиц с размером менее 200 мкм. Преимущество предложенного способа – возможность получать полые частицы. Существенными недостатками способа являются трудность получения порошков с узким распределением частиц по размерам на уровне 10-60 мкм и высокие затраты электроэнергии для плавления диоксида циркония.

Другим технологическим подходом для формирования частиц диоксида циркония с правильной формой является распылительная сушка суспензий, содержащих в качестве твердой фазы частицы диоксида циркония и при необходимости частицы стабилизирующих добавок. Сферическая форма частицам придается за счет распыления суспензии частиц с последующим удалением растворителя и формированием агрегированных порошков. Известен способ [Патент JP5932072, приор. от 12.02.2015, опубл. 13.05.2016, МПК C23C-004/10] получения частиц методом распылительной сушкой и способ применения этих частиц при создании теплозащитных покрытий методом газотермического напыления. Способ включает в себя стадии формирования суспензии с содержанием твердой части в диапазоне от 75 до 85 % массовых, подачу суспензии в дисковый распылитель, регулирование скорости вылета частиц суспензии из дискового распылителя в диапазоне от 60 до 90 м/с за счет регулирования скорости вращения диска, сушку частиц суспензии с формированием порошка и финишную обработку с получением порошка в котором 50% массовых частиц находятся в диапазоне от 40 до 100 мкм. Преимущество метода – возможность повышение жаропрочности покрытий за счет подавления роста трещин. Существенными недостатками способа являются высокие затраты энергии на сушку и трудность получения порошков с узким распределением частиц по размерам на уровне 10-60 мкм.

Таким образом технической проблемой, стоящей перед авторами настоящего изобретения, является сложность и многостадийность процесса получения материалов на основе диоксида циркония со сфероидальной формой частиц, а также трудности получения порошков с узким распределением частиц по размерам на уровне 10-60 мкм при использовании существующих способов синтеза.

РАСКРЫТИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Технический результат, достигаемый при реализации изобретения, заключается в существенном снижении количества операций процесса получения оксида циркония со сфероидальной формой частиц, а также в получении порошков с узким распределением частиц по размерам на уровне 10-60 мкм.

Заявленный способ получения материалов на основе диоксида циркония со сфероидальной формой частиц включает:

- приготовление водного раствора соли циркония;

- введение в водный раствор соли циркония соли металлов 3 группы Периодической системы химических элементов Д.И.Менделеева (ПСХЭ Д.И. Менделеева), выбранных из числа скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов;

- приготовление раствора-осадителя путем растворения гидроксидов щелочных металлов или аммиака в воде;

- введение в реакционный объем водной среды;

- осаждение гидратированного оксида циркония путем дозирования общего раствора солей металлов в реакционный объем в котором поддерживается перемешивание и постоянное значение рН из диапазона значений от 4 до 6 включительно за счет контролируемого введения раствора-осадителя;

- отделение образовавшегося осадка, сушку и термообработку.

Заявленный технический результат достигается за счет формирования агрегатов частиц гидратированного оксида циркония со сфероидальной формой и с узким регулируемым распределением агрегатов по размерам на стадии гидролиза раствора солей циркония путем поддержания постоянного значения рН процесса гидролиза на уровне рН изоэлектрической точки гидратированного оксида циркония.

Авторы изобретения исходили из того, что образующиеся в процессе гидролиза частицы гидратированного оксида циркония взаимодействуют с дисперсионной средой с образованием двойного электрического слоя. Образование двойного электрического слоя вызвано преимущественной адсорбцией на поверхности частиц гидроксил-ионов или ионов гидроксония и в свою очередь определяется уровнем рН дисперсионной среды. Двойной электрический слой обеспечивает электрокинетическую стабилизацию частиц, предотвращает их рост и агрегацию в процессе осаждения. Организация процесса гидролиза солей циркония при рН близком к рН изоэлектрической точки гидратированного оксида циркония приводит к образованию частиц со слабовыраженным двойным электрическим слоем. Такие частицы нестабильны, для них характерны процессы агрегационного роста в ходе гидролиза солей, что с течением процесса гидролиза в растворе за счет послойного наращивания приводит к формированию агрегатов с правильной формой близкой к сферической. Благодаря тому, что формирование агрегатов гидратированного оксида циркония при реализации заявленного способа происходит за счет послойного наращивания частиц, появляется возможность получения агрегатов с регулируемым размером. Последующая термическая обработка агрегатов гидратированного оксида циркония приводит к формированию частиц оксида циркония со сфероидальной формой и с узким распределением частиц по размеру.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Сущность изобретения поясняется фигурами, где изображено

- на фиг.1 - таблица параметров распределения частиц образцов по размерам,

- на фиг.2 - график распределения частиц по размерам для образца, полученного по примеру 1,

- на фиг.3 - оптическая фотография частиц образца по примеру 1.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На первой стадии получения материалов на основе диоксида циркония со сфероидальной формой частиц готовят раствор соли циркония в воде. В качестве соли циркония могут быть использованы водорастворимые соли неорганических кислот, в первую очередь нитрат, хлорид или сульфат циркония. Природа аниона соли не оказывает существенного влияния на возможность реализации изобретения, основными критериями для выбора являются достаточная растворимость в воде и устойчивость солей циркония к гидролизу в водном растворе. С целью приготовления раствора соли циркония соответствующую соль циркония растворяют в воде. Также возможно приготовление раствора соли циркония путем растворения соединений циркония в соответствующей неорганической кислоте. По преимущественному способу реализации изобретения для приготовления раствора соли циркония используют основной карбонат циркония и азотную кислоту.

На второй стадии получения материалов на основе диоксида циркония

в водный раствор соли циркония водят добавку солей металлов 3 группы ПСХЭ Д.И. Менделеева, выбранных из числа скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов. В качестве солей металлов 3 группы ПСХЭ Д.И. Менделеева могут быть использованы водорастворимые неорганические соли, в первую очередь нитраты, хлориды или сульфаты соответствующих металлов. Природа аниона соли не оказывает существенного влияния на возможность реализации изобретения, основными критериями для выбора являются достаточная растворимость в воде и устойчивость солей металлов 3 группы ПСХЭ Д.И. Менделеева, выбранных из числа скандия, иттрия, лантана и лантаноидов, к гидролизу в водном растворе. Добавка солей металлов 3 группы ПСХЭ Д.И. Менделеева может быть выполнена как путем растворения солей металлов 3 группы ПСХЭ Д.И. Менделеева в растворе соли циркония в воде, так и путем введения водного раствора солей металлов 3 группы ПСХЭ Д.И. Менделеева в раствор соли циркония. Предпочтительно, добавка соединения металлов III группы может составлять от 0 до 20% от массы композиции в пересчете на оксиды. При увеличении количества добавки соединения металлов 3 группы ПСХЭ Д.И. Менделеева выше 20% массовых возможно не полное соосаждение металлов 3 группы ПСХЭ Д.И. Менделеева выбранных из группы лантана, иттрия или лантаноидов с цирконием, однако это не оказывает влияние на возможность получения материалов на основе диоксида циркония со сфероидальной формой частиц при использовании заявленного способа.

На третьей стадии готовят раствор-осадитель. В качестве раствора-осадителя может быть использован водный раствор гидроксидов щелочных металлов или аммиака с водородным показателем среды более 7, в том числе водный раствор аммиака, гидроксида натрия или калия. По предпочтительному способу реализации изобретения для осаждения гидратированного оксида циркония используется водный раствор аммиака.

На четвертой стадии получения материала на основе диоксида циркония со сфероидальной формой частиц в реакционный объем вводят водную среду. Водная среда необходима для распределения реагентов и продуктов реакции в реакционном объеме на начальном этапе осаждения, а также для обеспечения контроля рН. Количество вводимой в реакционный объем водной среды не является принципиальным. В общем случае с целью снижения объема аппаратов в реакционный объем водят минимальное количество водной среды, необходимое для обеспечения контроля рН и распределения реагентов и продуктов реакции за счет перемешивания. В качестве водной среды может быть использована дистиллированная вода или водные растворы неорганических солей. В общем случае, тип катионов и анионов солей не оказывает существенного влияния на реализацию изобретения, однако добавка солей, обладающих буферной ёмкостью, таких как аммиачные соли, приводит к увеличению инерционности реакционного объема и облегчает поддержание постоянного значения рН в реакционном объеме на стадии осаждения. Предпочтительно, в качестве жидкой среды использовать дистиллированную воду или водный раствор нитрата или хлорида аммония с концентрацией от 0 до 5 моль/л включительно.

На пятой стадии получения материала на основе диоксида циркония со сфероидальной формой частиц проводят осаждение гидратированного оксида циркония путем дозирования общего раствора солей металлов, полученного на второй стадии, в реакционный объем в котором в ходе всего процесса осаждения поддерживается перемешивание и постоянное значение рН из диапазона значений от 4 до 6 единиц включительно, а еще лучше из диапазона значений от 4,5 до 5,5 единиц включительно за счет контролируемого введения раствора-осадителя, полученного на третьей стадии. Под постоянным значением рН в ходе всего процесса осаждения здесь и далее понимается значение, не отличающиеся от выбранного более чем на 0,1 ед., при этом в первые минуты осаждения отклонение рН от заданного значения может превышать значение 0,1 ед. вследствие низкой инерционности реакционного объема. Инерционность реакционного объема в процессе осаждения зависит от большого количества факторов, в первую очередь от состава начальной водной среды, от типа и концентрации используемого раствора-осадителя, от кислотности и общей концентрации солей в общем растворе солей металлов, от соотношения реакционного объема и скоростей введения компонентов. По этой причине длительность установления постоянного значения рН в реакционном объеме варьируется в значительной степени в зависимости от выбранных условий организации процесса осаждения. В общем случае в рамках предложенного способа синтеза значения рН в процессе осаждения считается постоянным, если период установления постоянного значения рН в реакционном объеме не превышает одной десятой части от общей длительности процесса осаждения. Постоянное значение рН в процессе осаждения обеспечивается за счет регулируемого независимого дозирования общего раствора солей металлов, имеющего значение рН менее 7, и раствора-осадителя, имеющего значение рН более 7. Регулируемое независимое дозирование растворов может быть выполнено при использовании перистальтических насосов, мембранных насосов, насосов прямого дозирования, центробежных насосов с регулируемой скоростью вращения, а также другими способами. Контроль рН реакционного объема ведут в течение всего процесса осаждения при помощи рН-метров с ион-селективными электродами или при помощи иных систем детектирования рН в растворе.

После завершения стадии осаждения (подачи всего объема общего раствора солей) проводят выдержку полученной суспензии при перемешивании. В случае использования в качестве добавки металлов 3 группы ПСХЭ Д.И. Менделеева иттрия, лантана или лантаноидов, для достижения полного осаждения этих компонентов после выдержки суспензии необходимо обеспечить плавное увеличение рН суспензии до значения 9 ед. Для достижения высокой однородности распределения соединений металлов 3 группы ПСХЭ Д.И. Менделеева в осадке операцию увеличение значения рН необходимо вести со скоростью не более 1 единица рН/час.

После выдержки гидратированного оксида циркония проводят операцию фильтрации, сушки и обжига осадка. Предпочтительно, сушку осадка проводить при температуре от 30 до 120°С до постоянной массы. Обжиг осадка может проводиться при температуре от 300 до 1300°С, при этом основные примеси солей возгоняются или разлагаются.

Пример 1.

Этот пример относится к композиции из 93% массовых диоксида циркония и 7% оксида иттрия.

В химический стакан при перемешивании вводят 620 мл дистиллированной воды и 442,9 грамма карбоната циркония (содержание оксида циркония в карбонате циркония составляет 42% массовых). К полученной суспензии добавляют 187 мл концентрированной азотной кислоты (массовая концентрация 71,6%). После полного растворения карбоната циркония в раствор вводят 60,2 грамма нитрата иттрия шестиводного Y(NO3)3⋅6H2O. После полного растворения нитрата иттрия объем раствора доводят до 2000 мл с использованием мерной колбы. Полученный раствор выдерживают при перемешивании в течение 2 часов перед началом осаждения. Параллельно с приготовлением общего раствора солей металлов готовят раствор-осадитель. Для этого в химический стакан вводят 350 мл концентрированного раствора аммиака (массовая концентрация 24%) и 438 мл дистиллированной воды.

Для осуществления осаждения гидратированного оксида циркония со сфероидальной формой частиц в реактор, снабженный мешалкой и датчиком рН, вводят 200 мл дистиллированной воды. Далее при помощи перистальтических насосов проводят контролируемое дозированное введение общего раствора нитратов металлов и водного раствора аммиака в реакционный объём при перемешивании, причем значение рН в реакционном объеме поддерживается постоянным на уровне 5,0±0,1 ед. за счет балансировки скоростей введения обоих растворов. После введения всего объема общего раствора нитратов металлов полученную суспензию выдерживают при рН=5,0±0,1 ед. в течение 2 часов. Далее проводят фильтрацию суспензии, осадок помещают в сушильный шкаф, сушку осадка проводят при температуре 1000С в течение 12 часов. После этого осадок обжигают в муфельной печи при температуре 10000С в течение 2 часов.

После обжига проводят измерение распределения частиц по размеру при помощи лазерного диффрактометра Analisetta 22 nanotech при использовании зеленого и инфракрасного лазера. Форму частиц исследуют при помощи оптической микроскопии. Распределение частиц по размерам характеризуют набором различных параметров, в том числе D90 – условный диаметр частицы, что 90 % частиц порошка будут иметь диаметр меньший или равный этому значению, D[4,3] – среднеобъемный диаметр частиц, дисперсия размеров – параметр, характеризующий разброс размеров частиц материала, определяемый отношением (D90-D10)/D50. Описанные параметры распределения частиц образцов по размерам для всех примеров представлены на Фиг.1. Распределение частиц по размерам для образца, полученного по примеру 1, представлено на фигуре 2, оптическая фотография частиц образца по примеру 1 представлена на фигуре 3.

Пример 2.

Этот пример относится к композиции из 82% массовых диоксида циркония и 13% оксида иттрия и 5% оксида скандия.

В химический стакан при перемешивании вводят 620 мл дистиллированной воды и 390,5 грамма карбоната циркония (содержание оксида циркония в карбонате циркония составляет 42% массовых). К полученной суспензии добавляют 165 мл концентрированной азотной кислоты. После полного растворения карбоната циркония в раствор вводят 88,1 грамм нитрата иттрия шестиводного Y(NO3)3⋅6H2O и 33,5 г нитрата скандия Sc(NO3)3. После полного растворения солей объем раствора доводят до 2000 мл с использованием мерной колбы. Полученный раствор выдерживают при перемешивании в течение 2 часов перед началом осаждения. Параллельно с приготовлением общего раствора солей металлов готовят раствор осадителя. Для этого в химический стакан вводят 350 мл концентрированного раствора аммиака (массовая концентрация 24%) и 438 мл дистиллированной воды. Осаждение ведут при постоянном значении рН равном 5,5±0,1. После введения всего объема общего раствора нитратов металлов полученную суспензию выдерживают при рН=5,5±0,1 ед. в течение 2 часов. Далее проводят медленное введение раствора-осадителя в суспензию до достижения значения рН равного 9, причем скорость роста рН составляет 1 ед. рН/час. После этого суспензию выдерживают при перемешивании еще в течение 2 часов, проводят фильтрацию суспензии. Далее осадок помещают в сушильный шкаф, сушку осадка проводят при температуре 100°С в течение 12 часов. После этого осадок обжигают в муфельной печи при температуре 1000°С в течение 2 часов.

Пример 3.

Этот пример относится к композиции из 93% массовых диоксида циркония и 7% оксида иттрия.

В химический стакан при перемешивании вводят 620 мл дистиллированной воды и 442,9 грамма карбоната циркония (содержание оксида циркония в карбонате циркония составляет 42% массовых). К полученной суспензии добавляют 258,5 мл концентрированной соляной кислоты (массовая концентрация 36,2%). После полного растворения карбоната циркония в раствор вводят 37,4 грамма хлорида иттрия шестиводного YCl3⋅6H2O. После полного растворения хлорида иттрия объем раствора доводят до 2000 мл с использованием мерной колбы. Полученный раствор выдерживают при перемешивании в течение 2 часов перед началом осаждения. Параллельно с приготовлением общего раствора солей металлов готовят раствор-осадитель также, как это описано в примере 1. Для осуществления осаждения гидратированного оксида циркония со сфероидальной формой частиц в реактор, снабженный мешалкой и датчиком рН, вводят 200 мл дистиллированной воды и 53 грамма хлорида аммония, что соответствует концентрации хлорида аммония в реакционном объеме 5 моль/л. Осаждение, сушку и обжиг осадка ведут так же, как описано в примере 1.

Пример 4.

Этот пример относится к композиции из 98% массовых диоксида циркония и 2% оксида иттрия.

В химический стакан при перемешивании вводят 620 мл дистиллированной воды и 466,7 грамма карбоната циркония (содержание оксида циркония в карбонате циркония составляет 42% массовых). К полученной суспензии добавляют 197 мл концентрированной азотной кислоты (массовая концентрация 71,6%). После полного растворения карбоната циркония в раствор вводят 13,6 грамм нитрата иттрия шестиводного Y(NO3)3⋅6H2O. После полного растворения нитрата иттрия объем раствора доводят до 2000 мл с использованием мерной колбы. Полученный раствор выдерживают при перемешивании в течение 2 часов перед началом осаждения. Раствор-осадитель готовят следующим образом: в химический стакан вводят 52,8 г безводного гидроксида натрия и 400 мл дистиллированной воды. За счет перемешивания добиваются полного растворения гидроксида натрия. После полного растворения гидроксида натрия объем раствора доводят до 500 мл с использованием мерной колбы. Осаждение ведут так же, как и описано в примере 1.

Пример 5.

Этот пример относится к композиции из 90% массовых диоксида циркония и 10% оксида иттербия.

В химический стакан при перемешивании вводят 620 мл дистиллированной воды и 390,5 грамма карбоната циркония (содержание оксида циркония в карбонате циркония составляет 42% массовых). К полученной суспензии добавляют 165 мл концентрированной азотной кислоты. После полного растворения карбоната циркония в раствор вводят 31,6 грамм сульфата иттербия восьмиводного Yb2(SO4)3⋅8H2O. После полного растворения соли объем раствора доводят до 2000 мл с использованием мерной колбы. Полученный раствор выдерживают при перемешивании в течение 2 часов перед началом осаждения. Осаждение ведут также как описано в примере 1, только при постоянном рН, равном 4. Осаждение, сушку и обжиг осадка ведут так же, как описано в примере 1.

Пример 6 (сравнительный).

Этот пример относится к композиции из 93% массовых диоксида циркония и 7% оксида иттрия.

Общий раствор солей металлов и раствор-осадитель готовят также, как в примере 1. Осаждение гидратированного оксида циркония ведут прямым способом, т.е. в общий раствор нитратов металлов при перемешивании вводят раствора аммиака до достижения значения рН равного 9. После этого осадок выдерживают в течение 2 часов при перемешивании, фильтруют, промывают на фильтре 1000 мл дистиллированной воды, сушат и обжигают так же, как это описано в примере 1.

Пример 7 (сравнительный).

В этом случае поступают так же, как описано в примере 6, только осаждение гидратированного оксида циркония ведут обратным методом, т.е. общий раствор нитратов металлов вводят по каплям в раствор аммиака при перемешивании.

Таким образом, из приведенных примеров следует, что осаждение гидратированного оксида циркония с различным содержанием металлов 3 группы ПСХЭ Д.И. Менделеева (примеры 1, 2, 4, 5) из растворов различных водорастворимых неорганических солей (примеры 1,3) при постоянном значении рН в реакционном объеме из диапазона значений от 4 до 6 (примеры 1, 3, 5), при использовании в качестве раствора-осадителя водного раствора аммиака и гидроксидов щелочных металлов (примеры 1, 2, 3, 4 и 5) приводит к образованию сфероидальных частиц, в то время как прямое осаждение (пример 6) и обратное осаждение (пример 7) не приводят к формированию частиц сфероидальной формы. Для образцов, полученных по примерам 1, 2, 3, 4 и 5 характерно низкое значение среднеобъемного диаметра, а также дисперсии размеров частиц по сравнению с образцами 6 и 7. Таким образом, предложенный способ синтеза обеспечивает достижение заявленного технического результата.

1. Способ получения материалов на основе диоксида циркония со сфероидальной формой частиц, характеризующийся тем, что готовят водный раствор водорастворимой неорганической соли циркония, вводят в водный раствор водорастворимой неорганической соли циркония водорастворимые неорганические соли металлов 3 группы Периодической системы химических элементов, выбранных из скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов, готовят раствор-осадитель путем растворения гидроксидов щелочных металлов или аммиака в воде и вводят его в реакционный объем водной среды, после чего осаждают гидратированный оксид циркония путем дозирования общего раствора солей металлов в реакционный объем, в котором осуществляют перемешивание и поддерживают постоянное значение рН из диапазона значений от 4 до 6 включительно за счет контролируемого введения раствора-осадителя, отделяют образовавшийся осадок и осуществляют сушку и термообработку.

2. Способ по п.1, отличающийся тем, что при осаждении гидратированного оксида циркония поддерживают постоянное значение рН из диапазона значений от 4,5 до 5,5 включительно.

3. Способ по п.1, отличающийся тем, что концентрация солей металлов 3 группы в общем растворе солей металлов составляет от 0 до 20% от массы композиции в пересчете на оксиды.

4. Способ по п.1, отличающийся тем, что концентрация циркония в общем растворе солей металлов составляет от 0,1 до 4 моль/л.

5. Способ по п.1, отличающийся тем, что перед началом осаждения в реакционный объем вводят дистиллированную воду.

6. Способ по п.1, отличающийся тем, что перед началом осаждения в реакционный объем вводят водный раствор нитрата или хлорида аммония с концентрацией от 0 до 5 моль/л включительно.

7. Способ по п.1, отличающийся тем, что после завершения осаждения при постоянном значении рН проводят плавное увеличение рН суспензии до значения 9 ед. со скоростью не более 1 единица рН/час.



 

Похожие патенты:

Изобретение относится к способу электрохимического получения гипохлоритов магния и меди, включающему электролиз водного раствора хлорида магния и меди, при температуре электролита 20-25°С на медные электроды подают электрический ток напряжением 0,45-0,6 В.
Группа изобретений относится к электроду для применения в ваннах электрохлорирования, способу изготовления электрода и способу биоцидной обработки водного раствора хлорида натрия.

Изобретение относится к синтезу химических веществ, а именно к способу получения координационного соединения цинка с пиколиновой кислотой. Способ включает взаимодействие иона металла с лигандом в среде трехкомпонентного водно-органического растворителя с последующим отделением осадка.

Изобретение относится к устройству токоподвода к электроду для электролитического получения окислителей перекисного типа, содержащее выполненный с выемкой электрод, токоподводящую штангу, установленную в выемку с образованием кольцевого зазора, в который помещен легкоплавкий сплав.

Изобретение может быть использовано в системах топливоподачи для двигателей внутреннего сгорания (ДВС). Заявлена силовая установка транспортного средства, содержащая ДВС 50 для приведения в движение транспортного средства.

Изобретение относится к области электротехники, в частности к электрохимии, и может быть использовано в промышленности и сельском хозяйстве. Электроактиватор воды содержит корпус, катодную и анодную камеры с электродами, ионопроницаемую диафрагму, патрубки с запорными элементами для подачи воды и сброса католита и анолита, установленные по бокам цилиндрического корпуса, клеммы, источник постоянного тока, блок управления, поплавковый датчик уровня воды.

Настоящее изобретение относится к электродному устройству, включающему анодный узел и катодный узел, каждый из которых содержит: фланец, выполненный с возможностью взаимодействия с фланцем на другом электродном узле для удержания между ними двумя разделителя; электролизное отделение, содержащее электрод и при работе заполненное жидкостью, подвергаемой электролизу; вход для жидкости, подвергаемой электролизу; и выходной коллектор для выделенного газа и отработанной жидкости.

Изобретение относится к аноду для электролиза водного раствора щелочи, который имеет низкую себестоимость и при этом может обеспечить низкую величину перенапряжения, а также к способу изготовления такого анода для электролиза водного раствора щелочи.
Изобретение относится к электрохимии. Для электрохимической регенерации методом мембранного электролиза солянокислого медно-хлоридного или солянокислого медно-аммонийно-хлоридного раствора травления меди в катодном пространстве, отделенном катионообменной мембраной, мембранного электролизера, где находится раствор травления меди, проводят катодный процесс электрохимического восстановления ионов меди до металлической меди.

Изобретение относится к синтезу α,ω-дибромполиоксаперфторалканов, предназначенных для получения оксигенирующих субмикронных эмульсий медицинского и биотехнологического назначения, путем анодного окисления ω-бромполиоксаперфторкарбоновых кислот.

Изобретение относится к области порошковой металлургии, в частности к способам получения градиентных нанокомпозитных теплозащитных покрытий для деталей, подверженных воздействию высокотемпературных газовых потоков в авиационной, ракетно-космической технике и машиностроении.

Изобретение относится к поглощающим СВЧ-энергию покрытиям и может быть использовано в электронной технике. Способ получения поглощающего СВЧ-энергию покрытия на металлических поверхностях деталей включает газотермическое напыление порошка, содержащего диоксид титана, при этом в качестве порошка, содержащего диоксид титана, используют порошок, состоящий из 100 % полиморфной модификации диоксида титана – рутила, а напыление осуществляют детонационным способом с получением покрытия, содержащего в качестве поглощающей СВЧ-энергию фазы - рутил.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности стальных деталей путем переноса высокотемпературным газовым потоком наночастиц.

Изобретение относится к области машиностроения, а именно к способам получения покрытия на поверхности деталей из цветных металлов путем переноса высокотемпературным газовым потоком наночастиц.

Изобретение относится к области газотермических технологий и может быть использовано для нанесения порошковых покрытий методом низкоскоростного газопламенного напыления.  Способ газопламенного напыления порошкового материала с получением покрытия на никелевой основе посредством термораспылителя включает активирование пламени, образованного при сгорании ацетилена и кислорода, и подачу порошкового материала под срез сопла термораспылителя, при этом в качестве активирующей добавки используют водный раствор аммиака, а активирование пламени осуществляют путем подачи активирующей добавки до термического контакта с ядром основного пламени через термический диссоциатор, установленный соосно внутри центрального канала термораспылителя, при этом глубина его проникновения в высокотемпературное ядро основного пламени регулируется.

Изобретение относится к плазмотрону для наплавки металлического порошка. Плазмотрон содержит защитное электрически нейтральное сопло с патрубком для подачи присадочного порошка, плазменное сопло с патрубком для подачи газа, соединенное с положительным полюсом источника питания постоянного тока, электрод, установленный внутри плазменного сопла и соединенный с отрицательным полюсом источника питания постоянного тока.

Изобретение относится к области металлургии, к напылению плазменных покрытий и может быть использовано для формирования износостойких, коррозионностойких и функциональных покрытий с минимальным содержанием оксидов, формирующихся в процессе напыления.

Изобретение относится к способу получения покрытий с интерметаллидной структурой из порошковых материалов с высокой адгезионной прочностью. Техническим результатом изобретения является получение интерметаллидного покрытия с регулируемой структурой.

Изобретение относится к изготовлению деталей из металлического порошкового материала с применением технологий 3D-печати. Способ послойного аддитивного изготовления детали включает получение первого слоя путем нанесения металлического порошкового материала на платформу и обработки лазером, получение второго и последующих слоев путем нанесения металлического порошкового материала на первый и предыдущие слои соответственно и обработки его лазером.

Изобретение обеспечивает оборудование для изготовления вала датчика крутящего момента путем формирования магнитострикционной области, включающей в себя покрытие на основе металлического стекла с заданным рисунком на боковой поверхности валообразной заготовки.

Изобретение относится к технологии утилизации гальванических растворов, содержащих ионы шестивалентного хрома, и может быть использовано в машиностроительной, радиоэлектронной, электротехнической промышленности, приборостроении, гальванотехнике.

Изобретение относится к золь-гель технологии получения материалов на основе диоксида циркония со сфероидальной формой частиц. Может использоваться при получении порошков для плазменного напыления, горячего и холодного прессования, лазерного спекания. Готовят водный раствор водорастворимых солей циркония, вводят в него водорастворимые соли металлов, выбранных из числа скандия, иттрия, лантана и лантаноидов с формированием общего раствора солей металлов. Готовят раствор-осадитель путем растворения гидроксидов щелочных металлов или аммиака в воде, проводят осаждение гидратированного оксида циркония путем дозирования общего раствора солей металлов в реакционный объем, в котором поддерживается перемешивание и постоянное значение рН из диапазона значений от 4 до 6 включительно за счет контролируемого введения раствора-осадителя. Отделяют образовавшийся осадок, сушку и термообработку. Обеспечивается получение узкофракционированных порошковых материалов при сокращении стадий процесса. 6 з.п. ф-лы, 3 ил., 7 пр.

Наверх