Магнитная система индукционного синхротрона с постоянным во времени магнитным полем

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком диапазоне скоростей ускоряемых частиц и ускоряющего электрического поля путем изменения частоты повторения индукционных импульсов. Магнитная система индукционного синхротрона не имеет принципиальных ограничений на снижение нижнего порога энергий ускоряемых частиц. Магнитная система индукционного синхротрона состоит из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя, а обмотки диполей и линз соответственно соединены с генераторами питания, каждый диполь содержит две составляющие с прямой и обратной полярностью магнитного поля, образуя таким образом биполярную магнитную систему, а каждая фокусирующая линза содержит две разнополярные линзы с плоскими магнитными полюсами. Технический результат - расширение рабочего диапазона ускоряемых энергий и упрощение процесса наладки и запуска ускорителя. 3 ил.

 

Область техники

Изобретение относится к ускорительной технике и может быть использовано при разработке циклических ускорителей с практически постоянным радиусом орбиты.

Уровень техники

Известна магнитная система ускорителя, состоящая из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя и соединены с генераторами питания обмоток диполей и линз. Для удержания радиуса- орбиты частиц постоянным, магнитное поле, создаваемое генераторами питания обмоток диполей, должно быть нарастающим во времени, а рабочая частота высокочастотных ускоряющих резонаторов переменной. (См. например Д.Ж. Ливингуд «Принципы работы циклических ускорителей» // Издательство иностранной литературы, Москва 1963). Поскольку диапазон перестройки резонансных частот резонатора ограничен, то ограничен и диапазон ускоряемых энергий частиц. Это обстоятельство вынуждает использовать дополнительно бустеры и пред-ускорители энергии.

Магнитная система ускорителей, содержащих диполи с постоянным во времени магнитным полем, которые, работая в режиме отражения частиц, отклоняют траекторию частиц на заданный угол, независящий от энергии частиц, формируют замкнутые орбиты с радиусом, который, также, практически не зависит от энергии частиц. Вопрос большого диапазона ускоряемых энергий и связанный с этим большой диапазон частоты повторения циклов решается изменением частоты повторения циклов индукционных ускоряющих импульсов. (Долбилов Г.В. «Индукционный синхротрон с постоянным магнитным полем» // Патент РФ №2608365, и Долбилов Г.В. «Способ синхротронного ускорения заряженных частиц в постоянном магнитном поле» // Патент РФ №2618626).

В качестве прототипа выбираем магнитную систему ускорителя с постоянным во времени магнитным полем и практически постоянным радиусом орбиты (Долбилов Г.В. «Индукционный синхротрон с постоянным магнитным полем» // Патент РФ №2608365).

Однако такая магнитная система имеет ограничения величины нижнего порога энергии частиц, а также, процессы наладки и запуска ускорителя усложнены.

Раскрытие изобретения

Изобретение решает задачу расширить рабочий диапазон ускоряемых энергий и, кроме того, упрощает процессы наладки и запуска ускорителя.

Поставленная цель достигается тем, что магнитная система индукционного синхротрона, состоящая из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя и соединенны с генераторами питания через обмотки диполей и линз, а каждый диполь содержит две составляющие с прямой и обратной полярностью магнитного поля, а каждая фокусирующая линза содержит две разно-полярные линзы с плоскими магнитными полюсами.

Отличительными признаками изобретения является следующее: каждый диполь содержит две составляющие с прямой и обратной полярностью магнитного поля, а каждая фокусирующая линза содержит две разно-полярные линзы с плоскими магнитными полюсами.

Совокупность выше указанных признаков позволяет решить задачу расширения рабочего диапазона ускоряемых энергий путем снятия ограничений на нижний порог энергий ускоряемых частиц и, кроме того, упростить процессы наладки и запуска ускорителя.

Перечень иллюстраций

Фиг. 1 (приложение) Схема ускорителя;

Фиг. 2 (приложение) Поперечное сечение биполярных магнитных диполей индукционного синхротрона;

Фиг. 3 (приложение) Схема расположения биполярных диполей и фокусирующих линз вдоль условно спрямленной траектории частиц.

Описание иллюстраций

На Фиг. 1 (приложение) приведена схема индукционного синхротрона с биполярной магнитной системой с постоянной во времени величиной магнитного поля, где:

(1) - дугообразные участки ускорителя;

(2) - индукционная ускоряющая система;

(3) - прямолинейные участки ускорителя;

(4) - инжекционная система;

(5, 6, и 7) - системы вывода пучка.

На Фиг. 2 (приложение) приведена схема поперечного сечения биполярной магнитной системы, которая расположена в дугообразных участках ускорителя, где:

(8) - магнитные полюса основного диполя с прямой полярностью поля;

(9) - магнитные полюса дополнительного диполя с обратной полярностью поля;

(10) - пучок, инжектированный на орбиту радиуса R0,

(11) - ускоренный пучок на орбите радиуса R=R0+ΔR (AR/R0 << 1).

На Фиг. 3 (приложение) приведена схема расположения биполярных диполей и фокусирующих линз вдоль условно спрямленной траектории частиц, где:

(12) - диполи с прямой полярностью магнитного поля;

(13) - диполи с обратной полярностью магнитного поля;

(14) - фокусирующие линзы с плоскими магнитными полюсами;

(α) - угол границы раздела разно-полярных магнитных диполей.

(S) - расстояние между фокусирующей и дефокусирущей линзами (14)

Осуществление изобретения

Частицы инжектируются на орбиту радиуса R0 (Фиг. 2). На этой орбите суммарное магнитное поле разно-полярных диполей равно нулю. Поэтому частицы, инжектированные на эту орбиту, могут, отражаясь от полей разно-полярных диполей, двигаться по этой орбите со сколь угодно малой скоростью. Согласно специфике циклических ускорителей, при увеличении скорости частиц при ускорении появляется дополнительная, центробежная сила, действующая на частицы равная Fц=Mν2/R, (где М, ν u R - масса, скорость и радиус орбиты). Действие этой силы эквивалентно действию магнитного поля величиной Вц=Mν/qR (где q - заряд частицы). В результате действия этой центробежной силы (эквивалентного ей магнитного поля) равновесная орбита, где суммарное действие всех сил равно нулю, смещается все в более и более сильные поля основного диполя. Радиус равновесной орбиты растет в соответствии с равенством R=P/qB, (Р - импульс частиц), пока не будут выведены из ускорителя.

Малые колебания частиц относительно равновесной орбиты устойчивы в радиальной y -плоскости (Фиг. 2). Длина волны колебаний частицы λ равна

где: q и P - заряд и импульс частицы, В0 - величина индукции поля диполей, η - коэффициент (м-1), величина которого зависит от конкретной геометрии диполей.

Неустойчивость колебаний в z - плоскости подавляется жесткофокусирующей системой (см. Фиг. 3), которая содержит линзы (3) (Долбилов Г.В. «Способ фокусировки пучков заряженных частиц» // Патент РФ №2633770,). Фокусное расстояние таких линз равно

Знак ± означает фокусирующее или дефокусирующее действие линзы. Р и В0 - импульс частиц и индукция магнитного поля линз, α - угол наклона границы раздела разно-полярных диполей линз. Колебания частиц как в у так и в z - плоскостях всегда устойчивы если

где: S - расстояние между фокусирующей и дефокусирущей линзами (14),

α - угол наклона границы разно-полярных плоских диполей линз (3).

Пример конкретного применения

Основной и дополнительный диполи биполярной магнитной системы индукционного синхротрона представляют собой электромагниты или постоянные магниты. Источник питания обмоток электромагнитов представляет собой генератор постоянного тока.

Рабочие поверхности магнитных полюсов основного и дополнительного диполей биполярной магнитной системы ускорителя могут, например, представлять собой совокупность плоских и цилиндрических поверхностей (как это изображено на Фиг. 2) или быть гиперболическими (как у квадрупольных линз).

Жесткофокусирующие линзы (14) магнитной системы (Фиг. 3) содержат плоские дипольные электромагниты, которые подключены к источникам постоянного тока. Каждая из линз содержит два разно-полярных диполя, граница раздела которых наклонена к оси на угол α (Фиг. 3). Величина этого угла влияет на жесткость фокусировки/дефокусировки. Фокусирующее или дефокусирующее действие линз зависит от полярности магнитного поля, а также и от направления наклона границы раздела разно-полярных диполей (Фиг. 3).

Магнитная система индукционного синхротрона с постоянным во времени магнитным полем, состоящая из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя, а каждый диполь и каждая линза через их обмотки соединены с соответствующими им генераторами питания, отличающаяся тем, что каждый диполь содержит две его составляющие с прямой и обратной полярностью магнитного поля, образуя таким образом биполярную магнитную систему, а каждая фокусирующая линза содержит две разнополярные линзы с плоскими магнитными полюсами.



 

Похожие патенты:

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности и может быть использовано при создании субнаносекундных ускорителей электронов мегавольтного диапазона.

Изобретение относится к ускорительной технике и может быть использовано для решения научных и прикладных задач. В предложенном способе ускоряют макрочастицу до сверхвысоких скоростей, а ударник, разогнанный до скоростей удара от 2.0 до 7.0 км/с, направляют на мишень, при ударной перфорации которой формируют струи фрагментов, головные части которых используют в качестве ускоренных макрочастиц.

Изобретение относится к технике формирования электронных пучков субнаносекундной длительности. Формирователь содержит формирующую и передающею коаксиальные линии, обостряющий и срезающий разрядные зазоры, формирующая линия подключена к источнику наносекундных высоковольтных импульсов, при этом между формирующей и передающей линиями дополнительно введена вторая формирующая линия с образованием второго обостряющего разрядного зазора.

Изобретение относится к способу вывода частиц из кольцевых ускорителей и в первую очередь из кольцевых ускорителей с постоянным магнитным полем и практически постоянным радиусом.

Изобретение относится к ускорительной технике, в частности к способам вывода частиц из кольцевых систем ускорителей и накопителей заряженных частиц, которые используют байпасные системы.

Изобретение относится к области и к способу фокусировки пучков заряженных частиц. В заявленном способе формируют систему магнитных полей, поочередно отклоняют ими частицы к оси и от оси системы, осуществляя таким образом жесткую фокусировку частиц, отклонение частиц проводят полями диполей с разной полярностью магнитной индукции, результирующее действие которых приводит к отклонению частиц только в одном из взаимно перпендикулярных направлений.

Изобретение относится к области сильноточной электроники. Технический результат - повышение плотности и величины тока пучка быстрых электронов.

Изобретение относится к ядерной физике и может быть использовано как инструмент исследования и как технологическое средство ускорения частиц в физическом эксперименте.

Изобретение относится к области ускорительной техники и может быть использовано для решения научных и прикладных задач. Ускорение макрочастиц в данном способе осуществляют градиентом поля бегущего по спиральной структуре электрического импульса.

Изобретение относится к области сильноточной импульсной электротехники. Технический результат - повышение эффективности использования электрической энергии, запасенной в индуктивном накопителе блока электропитания.

Изобретение относится к ускорительной технике и может быть использовано при разработке циклических ускорителей с практически постоянным радиусом орбиты, например индукционных синхротронов с постоянным во времени магнитным полем. Способ формирования равновесных траекторий частиц в циклическом ускорителе с постоянным радиусом орбиты заключается в том, что для формирования орбит частиц и сохранения радиуса орбиты частиц постоянным при их ускорении производят отражение частиц полями магнитных диполей и формируют жесткую фокусировку частиц. Отражения частиц производят посредством полей разнополярных диполей, а для формирования жесткой фокусировки частиц используют поля линз с плоскими магнитными полюсами. Для реализации данного способа формирования равновесных траекторий могут быть использованы стандартные магнитные диполи, теплые или сверхпроводящие, которые широко применяются в технике ускорителей частиц. Возможно также использование постоянных магнитов (например, NdFeB или CmCo). Технический результат - повышение рабочего диапазона энергий. 2 ил.

Изобретение относится к ускорительной технике и может быть использовано при разработке индукционных циклических ускорителей с практически постоянным радиусом орбиты и постоянным во времени магнитным полем. Индукционный, не резонансный способ ускорения решает задачу синхронизации в широком диапазоне скоростей ускоряемых частиц и ускоряющего электрического поля путем изменения частоты повторения индукционных импульсов. Магнитная система индукционного синхротрона не имеет принципиальных ограничений на снижение нижнего порога энергий ускоряемых частиц. Магнитная система индукционного синхротрона состоит из набора магнитных диполей и фокусирующих линз, которые расположены на дугообразных участках корпуса ускорителя, а обмотки диполей и линз соответственно соединены с генераторами питания, каждый диполь содержит две составляющие с прямой и обратной полярностью магнитного поля, образуя таким образом биполярную магнитную систему, а каждая фокусирующая линза содержит две разнополярные линзы с плоскими магнитными полюсами. Технический результат - расширение рабочего диапазона ускоряемых энергий и упрощение процесса наладки и запуска ускорителя. 3 ил.

Наверх