Способ селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (корс), их применение в качестве жидкого органического носителя водорода и водородный цикл на его основе

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол, которые применяют в качестве жидких органических носителей водорода (ЖОНВ). Способ осуществляют в присутствии сульфидного Co6-PMo12S/Al2O3 или Co6-BMo12S/Al2O3 катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нл/л сырья, температуре 370-390°C, объемная скорость подачи сырья 0,5-2,0 ч-1. Причем водородный цикл ЖОНВ включает связывание водорода при температурах от 200 до 260°C и его высвобождение при температурах от 300 до 380°C в процессе применения продуктов селективного гидрирования в присутствии гетерогенного катализатора. При этом гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt в количестве от 0,1 до 1,0 мас.%, или Pd в количестве от 0,5 до 2,0 мас.%, или Ni в количестве от 5 до 12 мас.%. Технический результат заключается в получении недефицитного крупнотоннажного ЖОНВ. 3 н. и 2 з.п. ф-лы, 4 табл., 40 пр.

 

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования, и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС).

Непрерывный рост потребности в стироле для производства полистирольных пластиков, синтетических смол для различных отраслей промышленности приводит к существенному повышению мощностей по его производству. Современные масштабы производства стирола даже при постоянном совершенствовании технологических процессов обуславливают образование значительных количеств (десятки тысяч тонн) отходов -кубовых остатков реакционных смол (КОРС) [Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола // Успехи современного естествознания, 2010, №2, с. 115-116]. Вопросом утилизации КОРС различные организации занимаются не один десяток лет, но до сих пор он остается актуальным.

Кубовые остатки ректификации стирола по составу можно условно представить тремя группами веществ - мономеры, полимеры и продукты органического синтеза. В результате исследований было идентифицировано около 95% веществ, входящих в состав КОРС. В зависимости от способов получения стирола, режима работы реактора, срока службы катализатора, режима работы колонн ректификации, применяемой ингибирующей системы и времени пребывания в отгонных аппаратах, состав КОРС меняется довольно в широких пределах. Содержание стирола в кубовом остатке ректификации может изменяться от 10 до 50%, а полистирола - 15-70%[Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола. Издательство: Академия Естествознания. Год издания: 2009].

Соединения, входящие в состав КОРС, могут служить носителями водорода после гидрирования двойных связей олефиновых заместителей и удаления кислорода (входящего в состав гидрохинона и других соединений, составляющих «не идентифицированные легкие вещества» и «высококипящий тяжелый остаток») [Филимонова О.Н. Переработка и применение кубовых остатков ректификации стирола. Издательство: Академия Естествознания. Год издания: 2009]. Это производится на стадии селективного гидрирования, после чего стабилизированный продукт может быть использован в качестве жидкого органического носителя водорода.

Аналогичные технические решения отсутствуют.

Известен метод применения жидких при комнатной температуре носителей водорода [US 2015/0266731 A1, Pub. Date: Sep.24, 2015]. Недостатком этого метода является ограниченность выбора ароматических соединений, являющихся жидкими при комнатной температуре. Большинство перспективных в качестве носителей водорода полициклических ароматических углеводородов являются твердыми при нормальных условиях и жидкими при температурах использования.

Наиболее близким к предлагаемому является метод использования полициклических ароматических углеводородов, таких как дибензилтолуол, бензилтолуол [US 9,879,828 В2. Date of Patent: Jan. 30, 2018], где описывается обратимое преобразование в технически значимых условиях, от температуры окружающей среды до 350°С и при давлениях от вакуума до 300 бар. Недостатком данного метода является использование синтетических углеводородов, что снижает их доступность и повышает цену.

Катализаторы, содержащие платину и палладий, готовили адсорбционной пропиткой носителя из водных растворов в присутствии конкурента (уксусной кислоты) в количестве 0,4-0,6 мл ледяной СН3СООН на 10 мл пропиточного раствора. Объем пропиточного раствора был постоянным и составлял 10 мл. Носитель, предварительно прокаленный γ-Al2O3, в количестве 5 г, заливался пропиточным раствором на 24 часа. После стадии сорбции пропиточный раствор сливался с готового катализатора. Катализаторы сушили при 80, 100 и 110°С. Катализаторы, содержащие никель готовили пропиткой по влагоемкости. Активация (восстановление) катализатора проводилась непосредственно в реакторе.

Эксперименты по гидрированию-дегидрированию смеси ароматических углеводородов проводились на лабораторной проточной установке. Загрузка катализатора - 2 г, катализаторы активировались нагреванием в токе водорода до 500°С, и выдержкой при этой температуре в течение 1 часа. Гидрирование проводилось при 4,0 МПа, при температуре 200-260°С и ОСПС=4 ч-1, дегидрирование при давлении 0,1 МПа и температуре 300-380°С. Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4 по массе.

Состав олигомеров стирола и продуктов селективного гидрирования, а так же параметры процесса представлены в таблице 1. В таблице приняты следующие обозначения: t - температура процесса селективного гидрирования (°С), Р - давление в процессе селективного гидрирования (МПа), ОСПС - объемная скорость подачи сырья (ч-1), K - кратность циркуляции водородсодержащего газа в процессе селективного гидрирования (нм33 сырья), димер стирола (2-С), продукты селективного гидрирования димера стирола (ПГ(2-С)), тример стирола (3-С), продукты селективного гидрирования тримера стирола (ПГ(3-С)), тетрамер стирола (4-С), продукты селективного гидрирования тетрамера стирола (ПГ(4-С)), пентамер стирола (5-С), продукты селективного гидрирования пентамера стирола (ПГ(5-С)), ТОС - тяжелые олигомеры стирола, ТПГОС - тяжелые продукты селективного гидрирования олигомеров стирола.

Состав кубового остатка реакционных смол и продуктов их селективного гидрирования, а так же параметры процесса представлены в таблице 2. В таблице приняты следующие обозначения: t - температура процесса селективного гидрирования (°С), Р - давление в процессе селективного гидрирования (МПа), ОСПС - объемная скорость подачи сырья (ч-1), K - кратность циркуляции водородсодержащего газа в процессе селективного гидрирования (нм33 сырья), С - стирол, α-МС (β-МС) - α-метилстирол (β-метилстирол), ЭБ - этилбензол, ПС - полистирол, ПГПС - продукты селективного гидрирования полистирола, НЛВ - не идентифицированные летучие вещества, ВТО - высококипящий тяжелый остаток, ПГВТО - продукты селективного гидрирования высококипящего тяжелого остатка, ИПБ - изопропилбензол, НПБ - нормальный пропилбензол, ДВБ - дивинилбензол, ДЭТБ - диэтилбензол, Н - нафталин, ПГН - продукты гидрирования нафталина, ДФ - дифенил, ДФМ -дифенилметан, ДФЭ - дифенилэтан, ДБ - дибензил, Ф - фенантрен, ПГФ - продукты гидрирования фенантрена.

Составы катализаторов селективного гидрирования, параметры их термообработки и сульфидирования представлены в таблице 3. Порядковые номера в таблице соответствуют номерам в таблицах 1 и 2.

Результаты применения стабилизированных гидрогенизатов в качестве жидких органических носителей водорода и состав катализаторов для проведения процесса представлены в таблице 4. Порядковые номера в таблице соответствуют номерам в таблицах 1 и 2.

При этом спектр квалифицированного использования кубовых остатков реакционных смол (КОРС) расширяется.

Технический результат заключается в получении недефицитного крупнотоннажного жидкого органического носителя водорода по способу селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС), в присутствии сульфидного Co6-PMo12S/Al2O3 или Co6-BMo12S/Al2O3 катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нл/л сырья, температуре 370-390°C, ОСПС (объемная скорость подачи сырья 0,5-2,0 ч-1), где катализатор включает носитель - Al2O3, и нанесенную на него фосфорномолибденовую гетерополикислоту H3PMo12O40⋅nH2O, или боромолибденовую гетерополикислоту H5BMo12O40⋅nH2O, подвергается термической обработке в окислительной или нейтральной среде при температуре от 100 до 350°C, а затем сульфидированию при температуре от 400 до 600°C в смеси 10-80% H2S в Н2, которая пропускается с расходом 1-5 л/час через катализатор объемом 50 см3; в применении продуктов селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС) в качестве жидких органических носителей водорода, водородный цикл, включающий связывание водорода и его высвобождение при использовании продуктов селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол (КОРС) в качестве жидкого органического носителя водорода, полученного, в присутствии гетерогенного катализатора, где гетерогенный катализатор включает носитель - Al2O3, и нанесенную на него Pt, или Pd, или Ni, причем содержание платины Pt находится в пределах 0,1 до 1,0% масс., 7 содержание палладия Pd находится в пределах 0,5 до 2,0% масс., содержание никеля Ni находится в пределах 5 до 12% масс., при этом связывание водорода осуществляется при температурах от 200 до 260°C, а освобождение водорода осуществляется при температурах от 300 до 380°C.

ПРИМЕРЫ

Пример 1. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №1, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №1 (таблица 1) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 200°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 300°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

* - Фракция, направляемая на гидрирование, разбавлялась продуктами гидрирования в соотношении 1:4 по массе.

** - на массу ненасыщенного водородом ЖОНВ.

Пример 2. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №2, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 0,6 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №2 (таблица 1) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 205°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 305°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 3. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №3, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 0,7 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №3 (таблица 1) в присутствии катализатора 5,0% масс. Ni/Al2O3 гидрировали* при температуре 210°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 310°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 4. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №4, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,8 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №4 (таблица 1) в присутствии катализатора 0,2% масс. Pt/Al2O3 гидрировали* при температуре 215°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 315°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 5. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №5, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,9 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №5 (таблица 1) в присутствии катализатора 0,7% масс. Pd/Al2O3 гидрировали* при температуре 220°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 6. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №6, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 5,0 МПа, ОСПС 1,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №6 (таблица 1) в присутствии катализатора 5,5% масс. Ni/Al2O3 гидрировали* при температуре 225°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 325°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 7. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №7, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 3,0 МПа, ОСПС 1,1 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №7 (таблица 1) в присутствии катализатора 0,3% масс. Pt/Al2O3 гидрировали* при температуре 230°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 5,62 г Н2 на 100 г ЖОНВ**.

Пример 8. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №8, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 4,0 МПа, ОСПС 1,2 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №8 (таблица 1) в присутствии катализатора 0,9% масс. Pd/Al2O3 гидрировали* при температуре 235°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 335°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 9. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №9, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 5,0 МПа, ОСПС 1,3 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №9 (таблица 1) в присутствии катализатора 6,0% масс. Ni/Al2O3 гидрировали* при температуре 240°С. По результатам проведенного процесса было поглощено 1,13 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 5,62 г Н2 на 100 г ЖОНВ**.

Пример 10. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №10, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 3,0 МПа, ОСПС 1,4 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №10 (таблица 1) в присутствии катализатора 0,4% масс. Pt/Al2O3 гидрировали* при температуре 245°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 345°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 11. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №11, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 4,0 МПа, ОСПС 1,5 ч-1 и кратности циркуляции водородсодержащего газа 500

нм33 сырья. Стабильный гидрогенизат №11 (таблица 1) в присутствии катализатора 1,1% масс. Pd/Al2O3 гидрировали* при температуре 250°С.По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 5,61 г Н2 на 100 г ЖОНВ**.

Пример 12. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №12, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 5,0 МПа, ОСПС 1,6 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №12 (таблица 1) в присутствии катализатора 6,5% масс. Ni/Al2O3 гидрировали* при температуре 255°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 13. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №13, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 3,0 МПа, ОСПС 1,7 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №13 (таблица 1) в присутствии катализатора 0,5% масс.Pt/Al2O3 гидрировали* при температуре 260°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 360°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 14. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №14, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 4,0 МПа, ОСПС 1,8 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №14 (таблица 1) в присутствии катализатора 1,3% масс. Pd/Al2O3 гидрировали* при температуре 265°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 15. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №15, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 5,0 МПа, ОСПС 1,9 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №15 (таблица 1) в присутствии катализатора 7,0% масс. Ni/Al2O3 гидрировали* при температуре 270°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 370°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 16. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №16, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №16 (таблица 1) в присутствии катализатора 0,6% масс. Pt/Al2O3 гидрировали* при температуре 275°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 375°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 17. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №17, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №17 (таблица 1) в присутствии катализатора 1,5% масс. Pd/Al2O3 гидрировали* при температуре 280°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,59 г Н2 на 100 г ЖОНВ**.

Пример 18. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №18, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №18 (таблица 1) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали* при температуре 285°С. По результатам проведенного процесса было поглощено 1,11 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,58 г Н2 на 100 г ЖОНВ**.

Пример 19. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №19, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №19 (таблица 1) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 290°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 20. Смесь олигомеров стирола селективно гидрировали в присутствии сульфидного катализатора №20, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №20 (таблица 1) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 300°С. По результатам проведенного процесса было поглощено 1,12 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,60 г Н2 на 100 г ЖОНВ**.

Пример 21. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №21, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №21 (таблица 2) в присутствии катализатора 5,0% масс. Ni/Al2O3 гидрировали* при температуре 200°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 300°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 22. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №22, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 0,6 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №22 (таблица 2) в присутствии катализатора 0,8% масс. Pt/Al2O3 гидрировали* при температуре 205°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 305°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 23. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №23, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 0,7 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №23 (таблица 2) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 210°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 310°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 24. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №24, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,8 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №24 (таблица 2) в присутствии катализатора 8,5% масс. Ni/Al2O3 гидрировали* при температуре 215°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 315°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 25. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №25, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,9 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №25 (таблица 2) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 220°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 320°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 26. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №26, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 5,0 МПа, ОСПС 1,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №26 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 225°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 325°С, при этом выделилось 5,35 г Н2 на 100 г ЖОНВ**.

Пример 27. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №27, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 3,0 МПа, ОСПС 1,1 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №27 (таблица 2) в присутствии катализатора 9,0% масс. Ni/Al2O3 гидрировали* при температуре 230°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 330°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 28. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №28, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 4,0 МПа, ОСПС 1,2 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №28 (таблица 2) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 235°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 335°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 29. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №29, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 5,0 МПа, ОСПС 1,3 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №29 (таблица 2) в присутствии катализатора 0,5% масс. Pd/Al2O3 гидрировали* при температуре 240°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 340°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 30. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №30, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 3,0 МПа, ОСПС 1,4 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №30 (таблица 2) в присутствии катализатора 9,5% масс. Ni/Al2O3 гидрировали* при температуре 245°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 345°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 31. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №31, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 4,0 МПа, ОСПС 1,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №31 (таблица 2) в присутствии катализатора 0,1% масс. Pt/Al2O3 гидрировали* при температуре 250°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 350°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 32. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №32, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 5,0 МПа, ОСПС 1,6 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №32 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 255°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 355°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 33. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №33, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 3,0 МПа, ОСПС 1,7 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №33 (таблица 2) в присутствии катализатора 10,0% масс. Ni/Al2O3 гидрировали* при температуре 260°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 360°С, при этом выделилось 5,35 г Н2 на 100 г ЖОНВ**.

Пример 34. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №34, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 4,0 МПа, ОСПС 1,8 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №34 (таблица 2) в присутствии катализатора 0,2% масс. Pt/Al2O3 гидрировали* при температуре 265°С. По результатам проведенного процесса было поглощено 1,06 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 365°С, при этом выделилось 5,32 г Н2 на 100 г ЖОНВ**.

Пример 35. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №35, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 5,0 МПа, ОСПС 1,9 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №35 (таблица 2) в присутствии катализатора 0,7% масс. Pd/Al2O3 гидрировали* при температуре 270°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 370°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 36. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №36, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 370°С, давлении 3,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №36 (таблица 2) в присутствии катализатора 10,5% масс. Ni/Al2O3 гидрировали* при температуре 275°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 375°С, при этом выделилось 5,33 г Н2 на 100 г ЖОНВ**.

Пример 37. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №37, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 375°С, давлении 4,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 300 нм33 сырья. Стабильный гидрогенизат №37 (таблица 2) в присутствии катализатора 0,3% масс. Pt/Al2O3 гидрировали* при температуре 280°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 38. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №38, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 380°С, давлении 5,0 МПа, ОСПС 2,0 ч-1 и кратности циркуляции водородсодержащего газа 400 нм33 сырья. Стабильный гидрогенизат №38 (таблица 2) в присутствии катализатора 2,0% масс. Pd/Al2O3 гидрировали* при температуре 285°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

Пример 39. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №39, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 385°С, давлении 3,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 500 нм33 сырья. Стабильный гидрогенизат №39 (таблица 2) в присутствии катализатора 12,0% масс. Ni/Al2O3 гидрировали* при температуре 290°С. По результатам проведенного процесса было поглощено 1,07 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,34 г Н2 на 100 г ЖОНВ**.

Пример 40. Кубовый остаток реакционных смол селективно гидрировали в присутствии сульфидного катализатора №40, полученного в соответствии с условиями, приведенными в таблице 3, при температуре 390°С, давлении 4,0 МПа, ОСПС 0,5 ч-1 и кратности циркуляции водородсодержащего газа 600 нм33 сырья. Стабильный гидрогенизат №40 (таблица 2) в присутствии катализатора 1,0% масс. Pt/Al2O3 гидрировали* при температуре 300°С. По результатам проведенного процесса было поглощено 1,08 г Н2 на 100 г ЖОНВ**. Гидрированный ЖОНВ был подвергнут дегидрированию на этом же катализаторе при температуре 380°С, при этом выделилось 5,36 г Н2 на 100 г ЖОНВ**.

1. Способ селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол в присутствии сульфидного Co6-PMo12S/Al2O3 или Co6-BMo12S/Al2O3 катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нл/л сырья, температуре 370-390°C, объемная скорость подачи сырья 0,5-2,0 ч-1.

2. Способ по п.1, где катализатор включает носитель Al2O3 и нанесенную на него фосфорно-молибденовую гетерополикислоту H3PMo12O40⋅nH2O или боромолибденовую гетерополикислоту H5BMo12O40⋅nH2O.

3. Способ по п.2, где гетерогенный катализатор селективного гидрирования подвергается термической обработке в окислительной или нейтральной среде при температуре от 100 до 350°C, а затем сульфидированию при температуре от 400 до 600°C в смеси 10-80% H2S в Н2, которая пропускается с расходом 1-5 л/ч через катализатор объемом 50 см3.

4. Применение продуктов селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол, полученных по любому из пп.1-3, в качестве жидких органических носителей водорода.

5. Водородный цикл, включающий связывание водорода при температурах от 200 до 260°C и его высвобождение при температурах от 300 до 380°C в процессе применения по п.4 продуктов селективного гидрирования в качестве жидкого органического носителя водорода в присутствии гетерогенного катализатора, где гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt в количестве от 0,1 до 1,0 мас.%, или Pd в количестве от 0,5 до 2,0 мас.%, или Ni в количестве от 5 до 12 мас.%.



 

Похожие патенты:

Изобретение относится к способу получения винилароматических углеводородов дегидрирования соответствующих алкилароматических углеводородов. Винилароматические углеводороды получают путем дегидрирования соответствующих алкилароматических углеводородов в присутствии водяного пара на неподвижном слое катализатора в две ступени.

Предложено устройство для восстановительно-десорбционной подготовки алюмохромового катализатора в процессах дегидрирования парафиновых углеводородов С3-С5 с кипящим слоем, циркулирующего в системе, содержащей реактор, регенератор, включающее вертикальные перегородки для циркуляции катализатора, барботеры-распределители для подачи инертного газа и газа-восстановителя, где устройство имеет корпус, содержащий вертикально установленную обечайку (2), верхнее (4) и нижнее (3) днища, средство (16) для подачи регенерированного катализатора из регенератора в верхней части корпуса, установленные на нижнем днище (3) корпуса соосно обечайке (2) корпуса первую перегородку (5) с отверстиями (7) для перетока катализатора в ее нижней части и внутри ее, на расстоянии, - вторую перегородку (6), при этом верхний торец (22) первой перегородки (5) расположен выше средства (16) для подачи регенерированного катализатора и выше верхнего торца (21) второй перегородки (6), причем между обечайкой (2) корпуса устройства и первой перегородкой (5) ниже переточных отверстий (7) установлены барботеры-распределители (10) для подачи инертного газа в секцию (11) первого кипящего слоя, а между первой перегородкой (5) и второй перегородкой (6) ниже переточных отверстий (7) установлен барботер-распределитель (12) для подачи газа-восстановителя в секцию (13) второго кипящего слоя и в объеме кипящего слоя, окружаемый второй перегородкой (6) над днищем (3) корпуса устройства установлен барботер-распределитель (14) для подачи инертного газа в секцию (15) третьего кипящего слоя, причем в нижней части секции (15) третьего кипящего слоя установлен патрубок (17) для выпуска подготовленного катализатора, присоединенный к нижнему днищу (3) корпуса устройства и в верхнем днище (4) корпуса устройства установлен патрубок (9) для отвода из устройства в верхнюю часть кипящего слоя регенератора в зону сжигания кокса и подаваемого топливного газа газообразных продуктов подготовки катализатора.

Изобретение относится к алюмохромовым катализаторам для дегидрирования С4-С5 парафиновых углеводородов до соответствующих олефинов. Катализатор представляет собой алюмооксидный носитель, на поверхности которого распределены оксидные соединения хрома и оксид калия непосредственно, катализатор обладает величиной удельной поверхности от 10 до 250 м2/г, объемом пор не менее 0,15 см3/г, концентрацией сильных кислотных центров, характеризующихся теплотой десорбции аммиака более 150 кДж/моль, не более 3 мкммоль NH3/г; хром в активном компоненте характеризуется в УФ-Вид-спектре диффузного отражения полосой поглощения d-d электронного перехода октаэдрического катиона Cr(III) с волновым числом от 16500 до 17500 см-1, предшественником оксида алюминия является бемит состава Al2O3⋅nH2O, где n=1,00-1,19 моль H2O/моль Al2O3, который содержит χ-Al2O3 в количестве от 0,5 до 20 мас.

Настоящее изобретение относится к способу получения катализатора дегидрирования алканов до алкенов, в котором: (a) получают отработанный катализатор от процесса нефтепереработки, (b) прокаливают отработанный катализатор, чтобы удалить кокс, (c) необязательно измельчают отработанный катализатор, чтобы получить отработанный носитель катализатора, (d) получают металлосодержащий раствор, смешивая желательный металлосодержащее соединение (соединения) с растворителем, где металл в металлосодержащем соединении выбран по меньшей мере из одной из групп, включающей группы VB, VIB, VIII и ряд лантанидов, и где по меньшей мере один металл выбран из группы щелочных металлов, и где растворитель выбран из толуола или деминерализованной (ДМ) воды, (e) обрабатывают отработанный катализатор или отработанный носитель катализатора металлосодержащим раствором, чтобы получить мокрую каталитическую смесь или мокрые частицы катализатора, (f) высушивают мокрую каталитическую смесь или мокрые частицы катализатора, чтобы получить сухую каталитическую смесь или сухие частицы катализатора, (g) необязательно повторяют стадии (e) и (f), (h) прокаливают сухую каталитическую смесь или сухие частицы катализатора, чтобы получить катализатор.

Изобретение относится к катализатору для дегидрирования лёгких парафиновых углеводородов, содержащему носитель, включающий оксид алюминия, который находится в форме хи-фазы с разупорядоченной структурой, и соединения хрома, щелочных металлов, кремния, по меньшей мере одно соединение переходного металла (Ме) из ряда: железо, медь, цинк, олово в комбинации с соединениями циркония и гафния при массовом соотношении Hf+Zr:Me = 1:0,01-1.

Предложен способ извлечения растворителя, включающий в себя: пропускают поток бутана в установку дегидрирования для образования первого технологического потока, содержащего олефины; осуществляют контактирование первого технологического потока с потоком ароматического растворителя в контактном охладителе для образования потока олефинов и второго технологического потока, содержащего растворитель; пропускают поток олефинов в разделительный блок с холодильной камерой для отделения потока легких газов от конденсированного потока, содержащего С4 и С5+ углеводороды; пропускают конденсированный поток, содержащий С4 и С5+ углеводороды, в установку селективного гидрирования для образования потока с пониженным содержанием ацетиленов; пропускают конденсированный поток с пониженным содержанием ацетиленов в колонну удаления тяжёлых соединений для образования верхнего потока тяжёлых углеводородов, содержащего олефины, и нижнего потока тяжёлых соединений, содержащего С5+ углеводороды и извлечённый растворитель; и пропускают часть нижнего потока тяжёлых соединений в контактный охладитель.

Изобретение относится к области нефтехимии, в частности к установкам дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды. Изобретение касается распределителя катализатора и транспортного газа для систем циркуляции реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 с секционированным решетками кипящим слоем, содержащего подводящую транспортную трубу 19, соединенную с расположенной по оси реактора и/или регенератора вертикальной транспортной трубой 1 с восходящим или нисходящим потоком катализатора и транспортного газа, установленную открытым торцом 2 соответственно вверх или вниз, расположенный соосно с ней расширитель, содержащий дно, соединенное с торцом 2 транспортной трубы 1, и крышку.

Предложен способ дегидрирования алканов или алкилбензолов до соответствующих алкенов и водорода (Н2), включающий приведение в контакт алкана или алкилбензола с катализатором на основе сульфида металла (MeS), в котором дегидрирование проводят в одном или нескольких реакторах дегидрирования в присутствии сероводорода (H2S) без образования H2S в качестве продукта реакции, водяной пар (H2O) составляет менее 10% (объемного расхода) от используемого газа-носителя для алканов или алкилбензолов, молярное соотношение сероводорода к алканам или алкилбензолам находится между 0,01 и 0,2, молярное соотношение сероводорода (H2S) к водороду (Н2) находится между 0,01 и 0,2, и либо бензол, толуол или комбинации их обоих, либо метан, этан или комбинации их обоих используют в качестве газа-носителя.

Предложен способ получения изопрена на железооксидных катализаторах в адиабатическом реакторе дегидрированием изоамиленов при температуре 580-630°С в присутствии перегретого водяного пара, включающий одновременное перегревание двух потоков водяного пара с получением соответствующих потоков перегретого водяного пара с температурой 550-750°С и направление первого потока перегретого водяного пара на смешение с изоамиленами перед дегидрированием.

Изобретение относится к области нефтехимии и может быть использовано, в частности, в процессах получения олефиновых углеводородов, используемых в производствах синтетических каучуков, пластмасс, высокооктановых компонентов бензина и других органических продуктов.

Предложен способ получения одного или более желаемых химических продуктов, выбранных из группы, состоящей из пропена, изобутена, 1-бутена, 2-бутена и стирола, включающий приведение гетерогенного катализатора, содержащего соединение, выбранное из группы, состоящей из B-нитрида, B-карбида, Ti-борида, Ni-борида, Nb- борида, Si-нитрида, Ti-нитрида и Al-нитрида, в контакт с кислородом и одним или более жидкими или газообразными реагентами, выбранными из группы, состоящей из пропана, н-бутана, изобутана и этилбензола, причем гетерогенный катализатор катализирует окислительное дегидрирование (ОДГ) одного или более жидких или газообразных реагентов с образованием одного или более желаемых химических продуктов.

Предложен способ дегидрирования алканов или алкилбензолов до соответствующих алкенов и водорода (Н2), включающий приведение в контакт алкана или алкилбензола с катализатором на основе сульфида металла (MeS), в котором дегидрирование проводят в одном или нескольких реакторах дегидрирования в присутствии сероводорода (H2S) без образования H2S в качестве продукта реакции, водяной пар (H2O) составляет менее 10% (объемного расхода) от используемого газа-носителя для алканов или алкилбензолов, молярное соотношение сероводорода к алканам или алкилбензолам находится между 0,01 и 0,2, молярное соотношение сероводорода (H2S) к водороду (Н2) находится между 0,01 и 0,2, и либо бензол, толуол или комбинации их обоих, либо метан, этан или комбинации их обоих используют в качестве газа-носителя.

Изобретение относится к способу получения стирола из отходов полистирола, включающему растворение отходов полистирола в органическом растворителе, введение полученного раствора в реактор и разложение полистирола в отсутствие катализатора при повышенной температуре и атмосферном давлении.

Данное изобретение относится к способу алкилирования алкилбензолов для получения алкилата. Способ включает следующие стадии: а) подачи алкилбензола, имеющего формулу (I), и первого потока алкилирующего агента в первую зону реакции, их контактирования с катализатором А с получением реакционного потока I, при этом по меньшей мере один алкилирующий агент выбран из группы, состоящей из метанола, формальдегида и диметоксиметана, где заместители Rn, когда их больше одного, могут быть одинаковыми или отличаться друг от друга, причем каждый независимо выбран из группы, состоящей из C1-4 линейных или разветвленных алкилов, величина n обозначает количество заместителей R и является целым числом 0, 1 или 2; б) подачи реакционного потока I и второго потока алкилирующего агента в, по меньшей мере, одну вторую зону реакции, где они контактируют с катализатором В с получением реакционного потока II; и в) подачи реакционного потока II в, по меньшей мере, одну третью зону реакции, где он контактирует с катализатором C с получением реакционного потока III, содержащего алкилат.

Изобретение относится к двум вариантам способа контроля за образованием слаболетучих соединений при получении альфа-метилстирола. Один из вариантов способа включает подачу первой композиции на дистилляционную колонну, причем указанная первая композиция содержит ацетон, фенол, кумол и альфа-метилстирол; очистку первой композиции в дистилляционной колонне с получением второй композиции, содержащей по меньшей мере 1 вес.% альфа-метилстирола и по меньшей мере одну органическую кислоту, причем весовое процентное содержание альфа-метилстирола во второй композиции выше, чем в первой композиции; и добавление некоторого количества амина во вторую композицию.

Изобретение относится к нефтехимической промышленности, в частности к катализаторам парофазной дегидратации метилфенилкарбинола в стирол. Предложен кальцийфосфатный катализатор для парофазной дегидратации фракции метилфенилкарбинола, включающий оксид кальция, пятиокись фосфора, хлор, воду при следующем содержании компонентов, мас.

Настоящее изобретение относится к вариантам композиции присадки для контроля и ингибирования полимеризации стирола. В одном варианте композиция состоит из амина и хинонметида, где указанный амин выбран из группы, содержащей триизопропаноламин (ТИПА) и пропоксилированный этилендиамин (ПЭД), триэтаноламин (ТЭА) и трибутиламин (ТБА), диэтаноламин (ДЭА), моноэтаноламин (МЕА) и их комбинации.

Изобретение относится к парофазному способу селективного удаления по меньшей мере 80 мол.% ацетиленовых примесей из входящего газового потока. Указанный входящий поток включает С2-С9 ненасыщенные углеводородные моноолефины, диолефины и ацетиленовые примеси.

Изобретение относится к вариантам способа выделения стирола и поддержания эффективности экстракционного растворителя в системе выделения стирола из обогащенного стиролом сырья.

Изобретение относится к способу дегидрирования алкилароматического углеводорода, включающему: контактирование потока парового реагента, содержащего алкилароматический углеводород и водяной пар и имеющего первое массовое соотношение пара к алкилароматическому углеводороду, с катализатором дегидрирования с образованием парофазного выходящего потока, содержащего углеводородный продукт, водяной пар и непрореагировавший алкилароматический углеводород; подачу по меньшей мере части выходящего потока в делитель для отделения углеводородного продукта от непрореагировавшего алкилароматического углеводорода, извлекаемых из делителя в виде донной и головной фракций соответственно; утилизацию тепла первой части упомянутой головной фракции посредством косвенного теплообмена со смесью, содержащей алкилароматический углеводород и воду, для по меньшей мере частичной конденсации упомянутой части и образования продукта азеотропного испарения, содержащего пары алкилароматического соединения и водяной пар, имеющего второе соотношение пара к алкилароматическому углеводороду; и объединение продукта азеотропного испарения с дополнительным алкилароматическим углеводородом и дополнительным паром, вместе или по отдельности, с образованием потока парового реагента.

Изобретение относится к вычислительной технике. Технический результат заключается в повышении отношения величин токов в открытом и закрытом состояниях (Ion/Ioff) с достижением 4-6 порядков.

Изобретение относится к области водородной энергетики, органической химии и катализа, в частности к разработке составов химических систем, способных циклично аккумулировать и высвобождать водород в каталитических процессах гидрирования-дегидрирования и представляющих собой продукты селективного гидрирования олигомеров стирола и кубовых остатков реакционных смол, которые применяют в качестве жидких органических носителей водорода. Способ осуществляют в присутствии сульфидного Co6-PMo12SAl2O3 или Co6-BMo12SAl2O3 катализатора, при давлении водорода 3,0-5,0 МПа, кратности циркуляции водорода 300-600 нлл сырья, температуре 370-390°C, объемная скорость подачи сырья 0,5-2,0 ч-1. Причем водородный цикл ЖОНВ включает связывание водорода при температурах от 200 до 260°C и его высвобождение при температурах от 300 до 380°C в процессе применения продуктов селективного гидрирования в присутствии гетерогенного катализатора. При этом гетерогенный катализатор включает носитель Al2O3 и нанесенную на него Pt в количестве от 0,1 до 1,0 мас., или Pd в количестве от 0,5 до 2,0 мас., или Ni в количестве от 5 до 12 мас.. Технический результат заключается в получении недефицитного крупнотоннажного ЖОНВ. 3 н. и 2 з.п. ф-лы, 4 табл., 40 пр.

Наверх