Интерферометр

Изобретение относится к технической физике. Интерферометр содержит закрепленные в едином корпусе стабилизированный по мощности и длине волны He:Ne лазер с установленными на его выходе магнитооптическим изолятором и 5-координатным устройством заводки лазерного излучения в оптоволокно, с помощью которого он соединен с оптоволоконным делителем пучка света, разделяющим пучок света на первый и второй когерентные оптические каналы, каждый из которых содержит последовательно установленные оптоволоконный контроллер поляризации, фазосдвигающий элемент и источник эталонной сферической волны, при этом оба фазосдвигающих элемента соединены с двухканальным контроллером. Интерферометр также содержит регистрирующее устройство с двумя цифровыми видеокамерами, оптически сопряженное с источником эталонной сферической волны первого когерентного оптического канала, и 5-координатный стол на выходе интерферометра для установки корректора волнового фронта. Технический результат заключается в создании компактного интерферометра с возможностью его использования как с горизонтальной, так и с вертикальной ориентацией оптической оси, позволяющего более эффективно выполнять свои функции. 1 ил.

 

Изобретение относится к технической физике, в частности к инструментам для исследования и измерения оптических элементов и систем, и может быть использовано в технической диагностике, например, для контроля параметров и хода технологических процессов.

Известен низкокогерентный интерферометр с дифракционной волной сравнения (патент RU 2547346), содержащий источник низкокогерентного света, поляризационные контроллеры и источник двух эталонных сферических волн.

К недостаткам известного решения можно отнести сложность оптической схемы и всей конструкции интерферометра, а также недостаточная эффективность работы интерферометра.

Задачей изобретения является создание компактного интерферометра с возможностью его использования как с горизонтальной, так и с вертикальной ориентацией оптической оси, позволяющего более эффективно выполнять свои функции.

Поставленная задача решается тем, что интерферометр содержит закрепленные в едином корпусе стабилизированный по мощности и длине волны He:Ne лазер с установленными на его выходе магнитооптическим изолятором и 5-ти координатным устройством заводки лазерного излучения в оптоволокно, с помощью которого он соединен с оптоволоконным делителем пучка света, разделяющим пучок света на первый и второй когерентные оптические каналы, каждый из которых содержит последовательно установленные оптоволоконный контроллер поляризации, фазосдвигающий элемент и источник эталонной сферической волны, при этом оба фазосдвигающих элемента соединены с двухканальным контроллером, интерферометр также содержит регистрирующее устройство с двумя цифровыми видеокамерами, оптически сопряженное с источником эталонной сферической волны первого когерентного оптического канала, и 5-ти координатный стол на выходе интерферометра для установки корректора волнового фронта.

Изобретение поясняется чертежом, где на фиг. 1 показана блок-схема интерферометра.

Основными элементами интерферометра являются стабилизированный по мощности и длине волны He:Ne лазер 1 с магнитооптическим изолятором и 5-ти координатным устройством заводки лазерного излучения в оптоволокно 2. Свет после заводки в оптоволокно попадает в оптоволоконный делитель пучка света 3, в котором разделяется на два когерентных оптических канала с интенсивностью в каждом примерно 1:1. Затем свет в каждом канале попадает на оптоволоконные контроллеры поляризации 4.1 и 4.2. Свет от канала 4.2 попадает на фазосдвигающий элемент 5.2 для управления фазовыми характеристиками фронта на выходе источника эталонной сферической волны (ИЭСВ) 7.2. Свет от канала 4.1 попадает на фазосдвигающий элемент 5.1 для управления фазовыми характеристиками фронта на выходе интегрированного с плоским зеркалом источника эталонной сферической волны (ИМИЭСВ) 7.1.

Управление фазосдвигающими элементами 5.1 и 5.2 осуществляется от двухканального контроллера 6. В свою очередь управляющие сигналы в двухканальный контроллер 6 поступают от цифровой видеокамеры 9.1, на которой производится регистрация интерференционной картины.

Сферическая расходящаяся волна ИЭСВ 7.1 частично засвечивает исследуемую деталь 11, частично направляется в оптическое регистрирующее устройство 8. Волновой фронт, отраженный от исследуемой детали 11 (рабочий фронт) фокусируется на плоском зеркале ИМИЭСВ 7.1, в непосредственной близости от ИЭСВ и далее, вместе с эталонным фронтом распространяется в направлении оптической части регистрирующего устройства 8. Оптическая часть регистрирующего устройства образована входным объективом и двумя линзами. Регистрация интерферограммы производится с помощью цифровой видеокамеры 9.1.

С учетом концепции прибора, объектив выбран такого типа, что обеспечивает изображение точечного источника в бесконечности, а линзы строят изображение на видеокамере. Такая концепция позволяет установить объектив с иной рабочей апертурой, не меняя взаимное положение других оптических элементов.

В концепции интерферометра предусмотрено плоское зеркало, расположенное между линзами в регистрирующем устройстве 8, которое можно вводить/выводить из пучка. В плоскости изображения оптической системы, образованной объективом, первой линзой и плоским зеркалом устанавливается вторая видеокамера 9.2, на которой формируется изображение ИМИЭСВ 7.1. Сигнал с камеры также выводится на монитор компьютера. Этот дополнительный канал позволяет производить настройку исследуемой детали дистанционно, по картинке с монитора.

При изучении выпуклых или асферических деталей на выходе интерферометра предусмотрен 5-ти координатный стол для установки корректора волнового фронта 10, который преобразует расходящийся сферический фронт в требуемый по форме (сходящийся, плоский или асферический).

Основные преимущества перед низкокогерентным интерферометром (патент RU 2547346):

- стабилизированный по частоте и мощности He-Ne лазер, обеспечивающий меньшие фазовые искажения волнового фронта, тем самым повышается точность измерений;

- отсутствует линия задержки, что упрощает оптическую схему и конструкцию интерферометра;

- упрощается конструкция узла источника эталонной сферической волны, вместо двух источников используется один;

- оптическая часть регистрирующего устройства построена таким образом, что можно изменять рабочую апертуру интерферометра за счет только замены объектива без подстройки других оптических элементов регистрирующего устройства.

В конструкцию интерферометра введено плоское зеркало и вторая камера, позволяющие проводить настройку изучаемой детали дистанционно, смотря на монитор компьютера, на котором выведено изображение области с источником эталонной сферической волны (раньше нужно было убирать видеокамеру, использовать специальный окуляр, перенастраивать оптическую часть регистрирующей системы на получение изображения области источника сферической волны, тянуться (если достанешь) и как-то юстировать деталь.

Линзы оптического устройства части регистрирующей системы разработаны таким образом, что минимизируется аберрация комы при прохождении рабочего и эталонного фронтов через оптическую часть регистрирующей системы.

Интерферометр, содержащий закрепленные в едином корпусе стабилизированный по мощности и длине волны He:Ne лазер с установленными на его выходе магнитооптическим изолятором и 5-координатным устройством заводки лазерного излучения в оптоволокно, с помощью которого он соединен с оптоволоконным делителем пучка света, разделяющим пучок света на первый и второй когерентные оптические каналы, каждый из которых содержит последовательно установленные оптоволоконный контроллер поляризации, фазосдвигающий элемент и источник эталонной сферической волны, при этом оба фазосдвигающих элемента соединены с двухканальным контроллером, интерферометр также содержит регистрирующее устройство с двумя цифровыми видеокамерами, оптически сопряженное с источником эталонной сферической волны первого когерентного оптического канала, и 5-координатный стол на выходе интерферометра для установки корректора волнового фронта.



 

Похожие патенты:

Группа изобретений относится к устройству и способу для измерения параметров фазовых элементов. Устройство для измерения оптических свойств тестируемого элемента, выбранного из группы, включающей фазовые элементы и оптические волокна, и способ, выполненный посредством указанного устройства, содержит низкокогерентный источник света, подключенный к входному оптоволоконному соединителю, разделяющему свет от низкокогерентного источника света на опорное плечо и измерительное плечо, детектор, сконфигурированный для приема света от опорного плеча и измерительного плеча, при этом по меньшей мере одно из опорного и измерительного плечей содержит оптический элемент, расположенный на линейном трансляторе, причем указанный оптический элемент выбран из группы, включающей первый и второй коллиматоры и зеркало.

Группа изобретений относится к устройству и способу для измерения параметров фазовых элементов. Устройство для измерения оптических свойств тестируемого элемента, выбранного из группы, включающей фазовые элементы и оптические волокна, и способ, выполненный посредством указанного устройства, содержит низкокогерентный источник света, подключенный к входному оптоволоконному соединителю, разделяющему свет от низкокогерентного источника света на опорное плечо и измерительное плечо, детектор, сконфигурированный для приема света от опорного плеча и измерительного плеча, при этом по меньшей мере одно из опорного и измерительного плечей содержит оптический элемент, расположенный на линейном трансляторе, причем указанный оптический элемент выбран из группы, включающей первый и второй коллиматоры и зеркало.

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков.

Изобретение относится к области волоконной оптики и может быть использовано для регистрации фазовых сигналов волоконно-оптических интерферометрических датчиков.

Изобретение относится к области измерительной техники и касается способа определения внутренних остаточных напряжений. Способ включает в себя освещение поверхности излучением лазера, рассеянного на опорный и предметный лучи, формирование спекл-интерферограмм путем вычитания записанных на видеокамеру кадров, полученных до и после выполнения зондирующего несквозного отверстия, и определение значения остаточного напряжения по результатам подсчета числа интерференционных полос с точностью в одну полосу интерферограммы в сторону увеличения.

Изобретение относится к области измерительной техники и касается способа определения внутренних остаточных напряжений. Способ включает в себя освещение поверхности излучением лазера, рассеянного на опорный и предметный лучи, формирование спекл-интерферограмм путем вычитания записанных на видеокамеру кадров, полученных до и после выполнения зондирующего несквозного отверстия, и определение значения остаточного напряжения по результатам подсчета числа интерференционных полос с точностью в одну полосу интерферограммы в сторону увеличения.

Изобретение относится к медицине, а именно к пульмонологии, торакальной хирургии, онкологии. Выполняют дренирование в зоне наиболее выраженного скопления патологического содержимого под местной анестезией с помещением с помощью троакара в полость плевры дренажной трубки, эвакуацию содержимого, проведение исследований.

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП).

Изобретение относится к оптике конденсированных сред и может быть использовано для определения оптических постоянных поверхности твердых тел, способных направлять поверхностные плазмон-поляритоны (ППП).

Изобретение раскрывает систему изготовления для изготовления конструктивных элементов конструкции самолета, включающую в себя сверлильный блок (2) для создания отверстий (3) в пакете (4) материалов по меньшей мере из двух слоев (4a, 4b) материала для введения крепежных элементов, в частности заклепочных элементов, и измерительный блок (5) для определения по меньшей мере одного параметра геометрии для произведенного ранее отверстия (3), при этом измерительный блок (5) имеет электронную измерительную систему (6) с оптическим сенсорным элементом (7), оптическую измерительную систему (8) и измерительную пику (9), причем для определения расстояния (10) между измерительной пикой (9) и точкой (11) измерения на соответствующей внутренней поверхности (12) отверстия измерительный блок (5) производит оптический измерительный луч (13), который выходит через оптическую измерительную систему (8) из измерительной пики (9) и попадает в точку (11) измерения на соответствующей внутренней поверхности (12) отверстия, и причем в измерительном цикле предусмотрено измерительное движение между измерительной пикой (9) и пакетом (4) материалов и измерительный блок (5) во время измерительного движения циклично с частотой сканирования определяет значения расстояния для различных точек (11) измерения и из значений расстояния определяет по меньшей мере один параметр геометрии для соответствующего отверстия (3), где указанное измерительное движение (19) представляет собой по существу спиралеобразное движение, так что точки измерения находятся на по существу спиралеобразной кривой измерения.
Наверх