Электродуговой плазмотрон


H05H1/26 - Плазменная техника (термоядерные реакторы G21B; ионно-лучевые трубки H01J 27/00; магнитогидродинамические генераторы H02K 44/08; получение рентгеновского излучения с формированием плазмы H05G 2/00); получение или ускорение электрически заряженных частиц или нейтронов (получение нейтронов от радиоактивных источников G21, например G21B,G21C, G21G); получение или ускорение пучков нейтральных молекул или атомов (атомные часы G04F 5/14; устройства со стимулированным излучением H01S; регулирование частоты путем сравнения с эталонной частотой, определяемой энергетическими уровнями молекул, атомов или субатомных частиц H03L 7/26)

Владельцы патента RU 2715054:

Закрытое акционерное общество "Липецкметаллургпроект" (RU)
Федеральное государственное бюджетное образовательное учреждение высшего образования "Липецкий государственный технический университет" (ЛГТУ) (RU)

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму. Технический результат заключается в упрощении конструкции, обеспечении регулирования скорости движения, температуры и объема плазмы на выходе трубчатого корпуса. Электродуговой плазмотрон содержит трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную щелевую камеру, в трубчатом корпусе перпендикулярно оси щелевой камеры выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом - катодный электрод, которые подключены к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, а также - к блоку зажигания дуги. Один торцевой конец трубчатого корпуса соединен с узлом подачи рабочего плазмообразующего газа. Соосно с трубчатым корпусом установлен подвижный с приводом возвратно-поступательного движения трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости трубчатого магнитопровода, между его внутренней поверхностью и внешней поверхностью корпуса, расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем ось полюсов расположена перпендикулярно по отношению к оси положения электродов, трубопровод для прохождения охлаждающего электроды агента выполнен в виде каналов в стенке трубчатого корпуса. 1 ил.

 

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму.

Известен электродуговой нагреватель газа постоянного тока, содержащий разрядную камеру, катодный узел и выполненный в виде, по меньшей мере, двух одинаковых плазмотронов, каждый из которых снабжен торцевым и выходным вспомогательным электродами, катодный узел выполнен в виде, по меньшей мере, двух одинаковых плазмотронов, каждый из которых снабжен торцевым и выходным вспомогательными электродами заданного диаметра [1].

Недостатком данного устройства является сложность регулирования производительности плазмотрона.

Наиболее близким техническим решением к предлагаемому изобретению является электродуговой плазмотрон, содержащий анодный и катодный блоки, расположенные соосно вдоль оси плазмотрона, разделенные изолятором, в котором имеется узел подачи рабочего плазмообразующего газа в электро-газоразрядную камеру, при этом в анодном и катодном блоках имеются входное и выходное отверстия и полости для прохождения охлаждающего агента, кроме того в анодном блоке имеется радиальное отверстие для ввода порошкового материала. В анодном и катодном блоках дополнительно имеются отверстия, в которых закреплены штуцеры, при этом дополнительные отверстия расположены с диаметрально противоположной стороны относительно входного анодного и катодного отверстий, при этом дополнительные штуцеры соединены дугообразным электроизоляционным трубопроводом для прохождения охлаждающего агента из анодного в катодный блок, концы которого закреплены на анодном выходном и катодном входном штуцерах [2].

Недостатком данного устройства является сложность конструкции и сложность регулирования производительности плазмотрона.

Задачей изобретения является упрощение конструкции электродугового плазмотрона и расширение диапазона регулирования количеством и выходной мощностью вырабатываемой плазмы.

Решение поставленной задачи достигается тем, что электродуговой плазмотрон, содержащий трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную щелевую камеру, в трубчатом корпусе перпендикулярно оси щелевой камеры выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом установлен катодный электрод, электроды подключены к силовому блоку питания их постоянным током, а также высоковольтному блоку зажигания дуги, узел подачи рабочего плазмообразующего газа в щелевую камеру, каналы для прохождения охлаждающего агента, один торцевой конец трубчатого корпуса соединен с узлом подачи рабочего плазмообразующего газа, соосно с трубчатым корпусом установлен трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости трубчатого магнитопровода между его внутренней поверхностью и внешней поверхностью трубчатого корпуса расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем ось полюсов расположена перпендикулярно по отношению к оси положения электродов, трубопровод для прохождения охлаждающего электроды агента выполнен в виде каналов в стенке трубчатого корпуса.

На чертеже приведены продольный и поперечный разрезы плазмотрона.

Устройство содержит трубчатый корпус 1, выполненный из непроводящего ток тугоплавкого материала, имеющего в стенке сквозные расположенные соосно перпендикулярно оси корпуса отверстия, в которых находятся анодный электрод 2 и катодный электрод 3, подключенные к выходам блока питания 4 с регулируемым по уровню и постоянным по знаку напряжением. Один торцевой конец трубчатого корпуса соединен с узлом подачи рабочего плазмообразующего газа 5. В стенке трубчатого корпуса выполнены каналы для прохождения охлаждающего агента 6. Соосно с трубчатым корпусом установлен подвижный трубчатый магнитопровод 7, внутренние размеры полости которого больше наружных размеров трубчатого корпуса 1. В полости подвижного трубчатого магнитопровода 7 между его внутренней поверхностью и внешней поверхностью корпуса соосно расположены два полюса 8 и 9 с обмотками 10, выводы которых подключены к источнику регулируемого напряжения постоянного тока 11, причем ось полюсов 8 и 9 расположена перпендикулярно по отношению к оси положения электродов 2 и 3. К выводам анодного электрода 2 и катодного электрода 3 также подключены выводы высоковольтного блока зажигания дуги 12. Подвижный трубчатый магнитопровод 7 с полюсами 8 и 9 с обмотками 10 соединен с приводом 13, обеспечивающим его возвратно-поступательное движение вдоль корпуса 1.

Устройство работает следующим образом.

К аноду 2 и катоду 3 от блока питания 4 подводится напряжение и инициируется электродуговой разряд и зажигается дуга. В полость трубчатого корпуса 1 к его торцевому входу от узла подачи 5 подается плазмообразующий газ под давлением, который проходит через дугу, и ионизируется с образованием плазмы, которая выходит из второго торцевого вывода трубчатого корпуса. Под действием движущегося плазмообразующего газа дуга растягивается. Для предотвращения ее разрыва подключают обмотку возбуждения 10, установленную на полюсах 8 и 9, к выходам источнику регулируемого напряжения постоянного тока 11, ток возбуждения протекает по обмотке 10 и создает электромагнитное поле, возникает электромагнитная сила, действующая на дугу, в направлении, противоположном направлению движения плазмообразующего газа, и стабилизирующая положение дуги.

При увеличении скорости движения и расхода плазмообразующего газа увеличивают напряжение на выходе источника 11, соответственно, увеличивают ток возбуждения в обмотке 10, вследствие чего увеличивается величина электромагнитного потока, создаваемого полюсами 8 и 9. В результате возрастает электромагнитная сила, действующая на дугу в зоне ее горения в направлении, противоположном направлению движения плазмообразующего газа, стабилизирующая положению дуги и препятствующая ее разрыву. Увеличение расхода плазмообразующего газа позволяет увеличить количество вырабатываемой плазмы. При необходимости увеличения мощности, выделяемой в дуге, увеличивают напряжение, подводимое от блока питания 4 к выводам анода 2 и катода 3, при этом возрастает ток, протекающий через дугу, возрастает температура и результирующая мощность выработанной плазмы. При необходимости перемещения дуги вдоль продольной линии внутри цилиндрического корпуса 1 включают привод 13, обеспечивающий возвратно-поступательное движение вдоль корпуса 1 трубчатого магнитопровода 7 с полюсами 8 и 9 и с обмотками 10.

Электродуговой плазматрон характеризуется простотой конструкции, обеспечивает регулирование скорости движения и расхода плазмы на выходе трубчатого корпуса.

Список литературы

1. А.с. СССР №599732. Электродуговой нагреватель газа постоянного тока / Жуков М.Ф., Лыткин А.Я., Худяков Г.Н., Аныпаков А.С. Опубл. 07.09.1982. Бюл.№33.

2. Патент РФ №2465748. Электродуговой плазмотрон / Мчедалов С.Г. Опубл 27.10.2012. Бюл. №30.

Электродуговой плазмотрон, содержащий трубчатый корпус, выполненный из непроводящего ток тугоплавкого материала, внутренняя полость которого образует продольную щелевую камеру, анодный и катодный электроды, подключенные к блоку питания с регулируемым по уровню и постоянным по знаку напряжением, блок зажигания дуги, узел подачи рабочего плазмообразующего газа в щелевую камеру, трубопровод для прохождения охлаждающего агента, отличающийся тем, что в трубчатом корпусе перпендикулярно оси щелевой камеры выполнены два расположенных друг против друга отверстия, в одном из которых установлен анодный электрод, а в другом установлен катодный электрод, один торцевой конец трубчатого корпуса соединен с узлом подачи рабочего плазмообразующего газа, соосно с трубчатым корпусом установлен подвижный трубчатый магнитопровод, внутренний диаметр которого больше наружного диаметра трубчатого корпуса, в полости подвижного трубчатого магнитопровода, между его внутренней поверхностью и внешней поверхностью трубчатого корпуса, расположены два полюса с обмотками, подключенными к другому источнику регулируемого напряжения постоянного тока, причем ось полюсов расположена перпендикулярно по отношению к оси положения электродов, подвижный трубчатый магнитопровод соединен с приводом возвратно-поступательного движения, трубопровод для прохождения охлаждающего электроды агента выполнен в виде каналов в стенке трубчатого корпуса.



 

Похожие патенты:

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму. Технический результат - упрощение конструкции, обеспечение регулирования скорости движения, температуры и объема плазмы на выходе трубчатого корпуса.

Изобретение относится к области электротермической техники, а именно к устройствам, вырабатывающим плазму в электродуговых камерах для сжигания твердых отходов. Технический результат - упрощение процессов регулирования температуры и повышение производительности при сжигании материала за счет дополнительного нагрева сжигаемого материала электрической спиралью, выполненной из тугоплавкого материала.

Изобретение относится к получению плазмы, а именно к устройствам для генерирования плазмы с использованием внешних электромагнитных полей и может применяться для ионно-плазменной обработки поверхностей различных материалов.

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги.

Изобретение относится к области ионно-лучевой вакуумной обработке материалов и может быть использовано в плазменных источниках заряженных частиц и, в частности, в машиностроении для упрочнения режущего инструмента, повышения эксплуатационных свойств деталей машин и механизмов.

Изобретение относится к области физики плазмы, газового разряда, сильноточной электроники и т.д. и может быть использовано для генерации магнитоактивной низкотемпературной плазмы в больших объемах в целях проведения научно-исследовательской деятельности.

Изобретение относится к плазменной технике и может быть использовано, например, в качестве импульсного источника электромагнитного излучения и направленных потоков заряженных частиц.

Изобретение относится к плазменной технологии в металлургическом производстве, а именно к способам и устройствам для переработки дисперсных материалов, и может быть использовано для получения чистых элементов.

Изобретение относится к получению порошка металлов, сплавов и металлических соединений из проволоки. Плазменно-дуговой реактор содержит корпус, первый электрод и размещенный на расстоянии от него второй электрод, причем первый электрод выполнен с каналом, выпускное отверстие которого выходит в пространство между первым и вторым электродами, средство для формирования плазменной дуги в пространстве между первым и вторым электродами, средство для подачи проволоки через упомянутое выпускное отверстие канала в пространство между первым и вторым электродами и камеру пассивирования, выполненную с возможностью подачи в нее паров проволоки и размещенную с образованием кольцевой щели с поверхностью корпуса для ввода газа.

Изобретение относится к соплам для головки плазменно-дуговой горелки с жидкостным охлаждением. Сопло включает корпус с общей осевой длиной L, внутренней поверхностью и внешней поверхностью, с передним и задним концами и с отверстием сопла на переднем конце, причем внешняя поверхность корпуса, исходя от заднего конца, имеет по существу цилиндрический первый участок с осевой длиной L1, на котором на заднем конце корпуса находится простирающая, преимущественным образом, в окружном направлении канавка для кольца круглого сечения или с расположенным в ней кольцом круглого сечения, которая в направлении заднего конца корпуса ограничена выступом, который задает внешний диаметр D11 корпуса, а на переднем конце находится центрирующая поверхность для держателя сопла, которая задает внешний диаметр D12 корпуса, и примыкающий к нему в направлении переднего конца второй участок, который задает осевую упорную поверхность для держателя сопла на границе с первым участком, которая задает внешний диаметр D21 корпуса и по меньшей мере на частичном участке по существу конусообразно сужается к переднему концу корпуса.
Наверх