Способ контроля вероятности достоверных измерений

Изобретение относится к технике обнаружения сигналов при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Техническим результатом является сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений. Способ содержит n-кратное повторение измерений, определение количества m недостоверных измерений и сравнение m с предельно допустимым значением mпд(n), при этом проводят измерений, где P1(0) - заданная вероятность того, что в серии измерений не будет ни одного недостоверного измерения, р - предельно допустимая вероятность недостоверного измерения, и если в серии количество недостоверных результатов m(n1)=mпд(n1)=0, то результат проверки считают положительным и прекращают испытания, в противном случае повторяют испытания по той же методике в объеме где Р2(0) - заданная вероятность того, что во второй серии не будет ни одного недостоверного измерения, и при повторении недостоверных измерений во второй серии бракуют изделие. 1 ил., 5 пр.

 

Предлагаемое изобретение относится к технике обнаружения сигналов при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации.

Известны способы дистанционных измерений, связанные с выделением слабых сигналов [1], заключающиеся в зондировании удаленного объекта импульсами лазерного излучения, приеме отраженных объектом сигналов и определении параметров отраженного сигнала, по которым судят о характеристиках удаленного объекта, например, дальности до него. Результаты таких процедур должны удовлетворять заданной вероятности достоверного измерения.

Известны средства анализа видеоизображения в системах охранного телевидения [2], осуществляющие обнаружение сигналов от удаленных датчиков. В этом случае также требуется обеспечивать заданную вероятность правильной идентификации сигнала.

Известны также методы стабилизации частоты ложных срабатываний на допустимом уровне в процессе измерения [3].

Особенностью этих способов являются противоречивые требования к порогу обнаружения принимаемых сигналов. С одной стороны, этот порог должен быть как можно ниже, чтобы обеспечить максимальную чувствительность датчика. С другой стороны, порог срабатывания должен быть достаточно высоким, чтобы минимизировать вероятность ложного срабатывания от внутреннего шума датчика и других помех. Таким образом, вероятность достоверного измерения должна быть как можно ближе к допустимому пределу, что предъявляет строгие требования к точности методов контроля, для обеспечения которой необходим соответствующий объем испытаний - тем больший, чем выше требуемая точность.

Наиболее близким по технической сущности к предлагаемому способу является способ выделения сигналов, реализованный в лазерном дальномере ЛПР-1 [4]. Проверку данного прибора на соответствие требованиям по вероятности достоверного измерения производят путем проведения 10 измерений, из которых не менее 9 должны быть достоверными.

При более высоких требованиях по вероятности достоверного измерения необходимый объем испытаний существенно возрастает, что ведет к увеличению продолжительности испытаний и сокращению ресурса проверяемого изделия.

Задачей изобретения является сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений.

Указанная задача решается за счет того, что в известном способе контроля вероятности достоверных измерений, заключающемся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнения m с предельно допустимым значением mпд(n), проводят измерений, где P1(0) - заданная вероятность того, что в серии измерений не будет ни одного недостоверного измерения, р - предельно допустимая вероятность недостоверного измерения, и, если в серии количество недостоверных результатов m(n1)=mпд(n1)=0, то результат проверки считают положительным и прекращают испытания, в противном случае повторяют испытания по той же методике в объеме n2=-lnP2(0)/р, где Р2(0) - заданная вероятность того, что во второй серии не будет ни одного недостоверного измерения, и при повторении недостоверных измерений бракуют изделие.

Техническим результатом изобретения является сокращение количества измерений в процессе испытаний при обеспечении заданного качества оценки вероятности достоверного измерения.

На фиг. 1 представлена схема устройства, реализующего способ.

Согласно фиг. 1 устройство содержит приемник 1, на вход которого подается смесь сигнала с шумом, а на выходе последовательно включены счетчик недостоверных измерений 2 и решающее устройство 3. К другим входам решающего устройства подключены счетчик циклов 4 и задатчик 5 предельных значений параметров m1пp=0 и n1пp. Устройство управляется программным блоком 6, связанным с приемником 1, счетчиками 2 и 4 и с задатчиком 5.

Способ осуществляется следующим образом.

Перед началом контрольной серии измерений с помощью программного блока 6 обнуляют счетчик недостоверных измерений 2 и счетчик циклов 4. Одновременно с помощью задатчика 5 устанавливают критические параметры наработки n1 и приемочное значение m1пp=0. Запускают контрольную серию измерений и производят подсчет недостоверных измерений путем их регистрации в счетчике 2. При достижении наработки n=n1 с помощью решающего устройства сравнивают зарегистрированное счетчиком 2 количество недостоверных результатов m=m1 с приемочным значением m1пp=0 и, если m1=m1пp, то считают вероятность недостоверных измерений в норме и дальнейшую проверку прекращают. Если условие m1=m1пp не выполняется, то счетчик недостоверных измерений обнуляют и повторяют описанный процесс до наработки n2, после чего сравнивают зарегистрированное счетчиком 2 количество недостоверных результатов m2 с приемочным значением m2пp и, если m2<m2пр, то считают вероятность недостоверных измерений в норме и заканчивают проверку.

Согласно предлагаемому изобретению, проверку проводят в два этапа.

На первом этапе принимают приемочное число mпр=0.

При этом для получения заданной достоверности проверки Р(0), достаточно провести испытания в объеме

Это следует из описания частоты недостоверных измерений пуассоновским распределением при малой величине р, которое в свою очередь сводится к экспоненциальному распределению [5], согласно которому вероятность отсутствия недостоверных замеров в серии n1 измерений

Из (2) получается необходимый объем n0 испытаний (1).

Пример 1

р=0,01; Р(0)=0,003.

n1=-lnP(0)/р=-ln0,003/0,01=580.

Пример 2

р=0,003; Р(0)=0,003

n1=-lnP(0)/р=-ln0,003/0,003=1936.

Поскольку 99,7% годных изделий соответствуют заданному критерию р, объем испытаний n1 удовлетворяет требованиям по достоверности.

0,3% годных изделий, которые не прошли такую проверку, будут приняты на втором этапе.

При наличии двух недостоверных измерений в первой серии изделие бракуют. При одном недостоверном измерении продолжают испытания. Объем второй серии испытаний n2 устанавливают аналогично объему первой серии.

где Р2(0) - заданная достоверность проверки на втором этапе. Величина Р2(0) может быть более строгой, чем Р(0).

Пример 3

р=0,01;

Р2(0)=0,0003.

n2=-lnP2(0)/р=-ln0,0003/0,01=811.

Реально аппаратура настраивается с запасом надежности обнаружения, поэтому во втором этапе проверки объемом n1 нуждается небольшое количество изделий, если такие вообще существуют в проверяемой партии.

Среднее количество измерений на одно изделие при проверке вероятности достоверного измерения по данному способу

Пример 4

n1=580; n2=811; р=0,01.

Согласно (4) ncp=588,1.

При оценке W вероятности недостоверного измерения известным способом путем подсчета относительной частоты недостоверных измерений [5] как отношения количества М* недостоверных измерений и полного объема серии N приемочное количество М*=М*пр определяется выражением

где

р - заданная вероятность недостоверного измерения

- доверительный коэффициент.

При минимально значимой величине М*пр=1 из (5) следует минимальный объем серии

где

Пример 5

р=0,01; =3.

Согласно (6) Nмин=1091.

Из сравнения результатов примеров 4 и 5 следует, что предлагаемый способ позволяет сократить объем испытательной серии почти вдвое.

Следовательно, предъявляемые требования по достоверности измерений могут быть проверены при значительно меньшем количестве испытаний, чем при одноэтапной проверке. Это в 2-10 раз позволяет сократить время проведения испытаний, что особенно важно при малых значениях р, характерных для особо ответственной техники, например, космических систем. Не менее важно, что при этом существенно сберегается технический ресурс проверяемого изделия.

Таким образом, выполняется задача изобретения - сокращение объема испытаний при обеспечении необходимой надежности оценки вероятности недостоверных измерений.

Источники информации

1. Боек. Использование лазеров для измерения расстояний. «Зарубежная радиоэлектроника», 1964, №3.

2. Методические рекомендации Р 78.36.030-2013. Применение программных средств анализа видеоизображения в системах охранного телевидения.

3. Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. // Оптико-механическая промышленность. - 1984 г. - №5, - С. 39-41.

4. Лазерный прибор разведки ЛПР-1. Техническое описание и инструкция по эксплуатации. - Прототип.

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М. «Высшая школа», 1977 г. - С. 66.

Способ контроля вероятности достоверных измерений, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнении m с предельно допустимым значением mпд(n), отличающийся тем, что проводят измерений, где P1(0) - заданная вероятность того, что в серии измерений не будет ни одного недостоверного измерения, р - предельно допустимая вероятность недостоверного измерения, и если в серии количество недостоверных результатов m(n1)=mпд(n1)=0, то результат проверки считают положительным и прекращают испытания, в противном случае повторяют испытания по той же методике в объеме где Р2(0) - заданная вероятность того, что во второй серии не будет ни одного недостоверного измерения, и при повторении недостоверных измерений во второй серии бракуют изделие.



 

Похожие патенты:

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении автоматизированной структурно-параметрической, либо непараметрической идентификации модели объекта по известным на основе измерений значениям входных и выходных сигналов.

Изобретение относится к вычислительной технике и может быть использовано для обработки данных. Техническим результатом является определение значений плотности и функции распределения вероятностей выходного сигнала.

Изобретение относится к средствам исследования функционального поведения технической системы. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в робототехнических комплексах военного назначения, состоящих из группы подвижных объектов с централизованной системой управления в условиях функционирования космической разведки.
Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении возможности фиксации и долговременного надежного хранения данных, касающихся времени рождения и событий жизни человека с одновременной связью таких данных с географическими данными и данными других пользователей.

Изобретение относится к контролю изменения технического состояния электродвигателей. Способ прогнозирования изменения состояния изоляции высоковольтных электродвигателей заключается в следующем.

Изобретение относится к области вычислительной техники. Технический результат - создание управляемого устройства, способного повысить достоверность моделирования и прогноза случайных событий в условиях возникновения катастрофических состояний числа отказов производственной и телекоммуникационной системы при плавных изменениях параметров управляющих воздействий или внешних факторов, а также своевременно оповещать администратора, на основе полученных данных идентификации и верификации.

Изобретение относится к организации доступа к данным, выбранным пользователем на основе корреляционного анализа. Технический результат заключается в уменьшении времени обработки данных.
Изобретение относится к сфере сбора и хранения данных систем, характеризующихся множеством объектов и параметров, например, таких как добыча ресурсов или строительство масштабных государственных объектов.

Изобретение относится к области вычислительной техники и может быть использовано для прогнозирования состояния группы подвижных объектов военного назначения. Техническим результатом является автоматический расчет значений, характеризующих местоположение, состояние и вероятность обнаружения подвижных объектов на заданный интервал прогнозирования.

Изобретение относится к области устройств статистического приемочного контроля по количественному признаку. Технический результат заключается в сокращении времени для принятия устройством решения о соответствии времени запаздывания зажигания исследуемых индикаторов заданным требованиям.

Изобретение относится к области технической диагностики. Технический результат заключается в расширении арсенала средств.

Изобретение относится к стоечному серверу и может быть использовано для анализа и сброса ненормального состояния стоек. Техническим результатом является автоматическое выполнение процедуры удаленного восстановления контроллеров управления стойкой или контроллеров управления материнской платой.

Изобретение относится к стоечному серверу и может быть использовано для анализа и сброса ненормального состояния стоек. Техническим результатом является автоматическое выполнение процедуры удаленного восстановления контроллеров управления стойкой или контроллеров управления материнской платой.

Изобретение относится к средствам генерирования рекомендации для представления пользователю в рамках контекста web-браузера пользователя. Технический результат заключается в предоставлении более релевантных результатов поиска и улучшении ранжирования результатов поиска.

Изобретение относится к средствам генерирования рекомендации для представления пользователю в рамках контекста web-браузера пользователя. Технический результат заключается в предоставлении более релевантных результатов поиска и улучшении ранжирования результатов поиска.

Изобретение относится к железнодорожной автоматикe для управления транспортом. Контроллер содержит два (А, Б) микропроцессорных вычислителя, интерфейсы верхнего уровня CAN1А и CAN1Б, соединенные с драйверами CAN-сетей, интерфейсы нижнего уровня CAN2А и CAN2Б, соединенные с драйверами CAN-сетей, четыре универсальных асинхронных приемника-передатчика, соединенные с соответствующим из четырех драйверов последовательного интерфейса RS-422, два последовательных интерфейса SPI 1,2, два последовательных интерфейса SPI 3, безопасную асинхронную схему сравнения (БАСС).

Изобретение относится к дата-центру и может быть использовано для анализа и сброса ненормального состояния стоек, применяемых в дата-центре. Технический результат – автоматическое выполнение процедуры удаленного аварийного восстановления ВМС в стойке для сброса ненормального состояния ВМС из удаленного пункта.

Изобретение относится к дата-центру и может быть использовано для анализа и сброса ненормального состояния стоек, применяемых в дата-центре. Технический результат – обеспечение автоматического выполнения служебной процедуры удаленного перезапуска RMC или BMC в стойке для предотвращения возникновения в RMC или BMC ненормального состояния.

.Изобретение относится к области моделирования сложных организационно-технических систем и может быть использовано при проектировании систем автоматизированного контроля систем связи.
Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения длины колонны труб оптическими методами. Технической задачей предлагаемого изобретение является создание способа измерения длины труб при спускоподъёмных операциях, упрощающего использование за счет применения для измерений лазерного длинномера и не зависящего от внешних факторов.
Наверх