Способ оценки интеграции остеозамещающего материала в эксперименте

Изобретение относится к медицине, а именно к гематологии, биохимии, имплантологии, и может быть использовано для оценки интеграции остеозамещающего материала в эксперименте. В периферической крови экспериментального животного-кролика на 45 сутки после имплантации аугмента определяют значения концентрации С-концевых телопептидов коллагена I типа, концентрации остеокальцина и количество лейкоцитов. Рассчитывают индекс остеоинтеграции по формуле ИОИ=1,02663-0,42041×СКТ+0,19513×ОК-0,67896×ЛЦ, где ИОИ - индекс остеоинтеграции; СКТ - концентрация С-концевых телопептидов, нг/мл; ОК - концентрация остеокальцина, нг/мл; ЛЦ - количество лейкоцитов в периферической крови, ×10-9/л. При значении ИОИ≥0,5 судят об успешной остеоинтеграции имплантата на сроке 45 суток с момента аугментации. Способ обеспечивает возможность объективно оценить динамику остеорепаративного процесса по образцам периферической крови небольшого объема у экспериментальных животных-кроликов за счет проведения гематологического анализа периферической венозной крови из краевой вены уха кроликов на 45 сутки после имплантации аугмента с определением в ней количества лейкоцитов, получения сыворотки крови и определения в ней концентрации С-концевых телопептидов коллагена I типа и остеокальцина иммуноферментным методом, которые отражают активность остеорезорбции, остеогенеза, а также уровень воспалительной реакции. 2 пр.

 

Изобретение относится к области экспериментальной медицины, а именно к гематологии, биохимии, имплантологии и предназначено для косвенной аттестации интеграции остеозамещающего материала на доклиническом этапе.

Последние десятилетия демонстрируют непрерывный поиск материалов и технологий для замещения дефектов костной ткани в травматологии и ортопедии. На доклиническом этапе такие исследования проводятся на экспериментальных животных. В связи, с чем возникает необходимость в оценке успешности остеоинтеграции имплантируемых аугментов в эксперименте.

Одним из методов косвенной оценки степени остеоинтеграции являются рентгенологические исследования, включая способ денситометрической оценки плотности костной ткани. Программное обеспечение современных компьютерных томографов (КТ) и ортопантомографов предоставляет возможность оценки плотности ткани на линейном участке с помощью денситометрических кривых [1]. Используется так же метод регистрации посредством электронного датчика резонансных электромагнитных колебаний имплантата, окружающей кости при воздействии на них электромагнитного поля. Методика измерения позволяет отслеживать динамику процесса остеоинтеграции и получить информацию о стабильности имплантата на различных этапах заживления и функционирования [2].

Эти методы сложно использовать на экспериментальных животных, поскольку специальное оборудование предназначено для проведения исследований пациентов в медицинских учреждениях.

Известен способ оценки остеоинтеграции пористых проволочных материалов в эксперименте (пат. RU 2550974, 2015), включающий анализ макропрепаратов при освобождении поровых пространств пористого проволочного материала и анализ внутрипоровых фрагментов пористого проволочного материала, для чего осуществляют забор костных блоков с изучаемым пористым проволочным материалом, фиксацию костной ткани с пористым проволочным материалом, декальцинирование, обезжиривание, обезвоживание, заливку этой ткани, изготовление срезов, окрашивание и гистоморфометрию.

Однако для получения достоверных результатов исследования необходимо полное выведение животного из эксперимента.

Задачей настоящего предложения является разработка способа, позволяющего объективно оценить динамику остеорепаративного процесса по образцам периферической крови небольшого объема у экспериментальных животных.

Поставленная задача решается путем проведения гематологического анализа периферической венозной крови из краевой вены уха кроликов на 45 сутки, после имплантации аугмента, с определением в ней количества лейкоцитов, получения сыворотки крови и определения в ней концентраций С-концевых телопептидов коллагена I типа и остеокальцина иммуноферментным методом, которые отражают активность остеорезорбции, остеогенеза, а также уровень воспалительной реакции. По формуле определяют индекс остеоинтеграции (ИОИ) по которому оценивают успешность остеоинтеграции при аугментации костных дефектов лабораторных животных

Предлагаемый способ заключается в том, что используют небольшие объемы периферической крови экспериментального животного. В полученном образце цельной крови на лабораторном гематологическом анализаторе определяют общее количество лейкоцитов, в образце сыворотки крови определяют концентрацию маркеров остеогенеза (остеокальцин) и остеорезорбции (С-концевые телопептиды коллагена I типа) с использованием иммуноферментного анализатора и стандартных лабораторных методов. Полученные значения включают в формулу:

ИОИ=1,02663-0,42041×СКТ+0,19513×ОК-0,6789×ЛЦ,

где ИОИ - индекс остеоинтеграции,

СКТ - концентрация С-концевых телопептидов (нг/мл),

ОК - концентрация остеокальцина (нг/мл),

ЛЦ - количество лейкоцитов в периферической крови (×10-9/л)

и при значении индекса остеоинтеграции ≥0,5 судят об успешной остеоинтеграции имплантата на сроке 45 суток с момента аугментации.

Для эффективной репаративной регенерации костной ткани решающее значение имеет соотношение процессов остеогенеза и остеорезорбции, негативное влияние может оказывать воспалительная реакция. Отражением данных процессов являются специфические белки и клетки крови. Таким образом, определенное соотношение биохимических маркеров остеогенеза и резорбции кости в динамике регенераторного процесса, дополненное гематологическими показателями, характеризует степень успешности остеоинтеграции у экспериментальных животных. Полученные результаты собственных лабораторных биохимических и гематологических исследований были проанализированы с использованием метода множественной регрессии при помощи статистической программы «Statistica», что позволило определить срок отбора проб и показатели, на основе которых была создана адекватная математическая модель связи остеоинтеграции с содержанием маркеров формирования и резорбции кости.

Описание способа

На 45 сутки, после имплантации аугмента проводят утренний забор периферической крови из краевой вены уха кролика в специализированные пробирки для гематологического (с антикоагулянтом ЭДТА) и биохимического исследования. Гематологическое исследование крови с определением количества лейкоцитов проводят на лабораторном гематологическом анализаторе. После центрифугирования пробы крови, взятой для биохимических исследований, сыворотку исследуют методом иммуноферментного анализа на стандартном лабораторном оборудовании с использованием стандартных наборов и определяют концентрацию С-концевых телопептидов коллагена I типа и остеокальцин. Полученные значения показателей используют для определения индекса остеоинтеграции по формуле:

ИОИ=1,02663-0,42041×СКТ+0,19513×ОК-0,67896×ЛЦ,

где ИОИ - индекс остеоинтеграции,

СКТ - концентрация С-концевых телопептидов (нг/мл),

ОК - концентрация остеокальцина (нг/мл),

ЛЦ - количество лейкоцитов в периферической крови (×10-9/л)

и если значение индекса остеоинтеграции ≥0,5 судят об успешной остеоинтеграции имплантата на сроке 45 суток с момента аугментации. Таким образом, предлагаемый метод на основании определения лабораторных показателей позволяет оценить успешность остеоинтеграции при аугментации костных дефектов лабораторных животных современными остеопластическими материалами.

Этот способ позволяет использовать небольшой объем крови лабораторного животного, использует стандартизованные лабораторные методы и стандартное лабораторное оборудование. Впервые по математически выраженному соотношению белков остеогенеза и остеорезорбции в сочетании с уровнем лейкоцитов периферической крови оценивается успешность аугментации резорбируемыми и нерезорбируемыми остеопластическими материалами костных дефектов у лабораторных животных.

Эксперименты проводили на 27 кроликах женского пола породы Шиншилла массой 3-3,5 кг в виварии ФГБОУ ВО «Уральский государственный медицинский университет» Минздрава России. Условия содержания животных соответствовали стандартам, указанным в руководстве The Guide for Care and Use of Laboratory Animals (ILAR publication, 1996, National Academy Press, 1996). Животные были здоровы, имели ветеринарный сертификат качества и состояния здоровья. Животные были адаптированы/акклиматизированы в лаборатории в течении как минимум 7 дней до начала введения в эксперимент. Животные находились в идентичных условиях кормления и содержания. Все манипуляции над животными проводили в соответствии с Хельсинкской декларацией о гуманном обращении с животными.

При подготовке к операции за сутки кормление прекращали, животные получали лишь воду. Кроликам в области операционного поля выстригали шерсть, кожу обрабатывали 70% спиртом. Оперативное вмешательство выполняли под общей анестезией - внутримышечно рометар 2% - 8 мг/кг (Rometar 2%, СПОФА, Чехия) и золетил - 6 мг/кг (Zoletil-100, «Virbac Sante Animale»). Для местного обезболивания использовали 0,25% новокаина, которым выполняли также гидравлическую диссекцию тканей. Клиническое наблюдение за экспериментальными животными показало: через сутки после операции состояние кроликов (температура тела, частота дыхания и сердцебиения, положение тела, подвижность, аппетит) во всех группах было удовлетворительным. Животные активно передвигались по клетке, опираясь на оперированные конечности. Локальные проявления воспалительной реакции (гиперемия и отечность при пальпации области операционного шва - болевая реакция) были отмечены в течение первых 10 суток после операции.

Аугментация синтетическим резорбируемым бета-трикальций фосфатом (производство Science & Bio Materials, Франция) выполнялась 7 животным, резорбируемым ксенопластичестическим материалом «Остеоматрикс» (производство «Коннектбиофарм», Россия) - 8 животным, нерезорбируемым пористым титановым аугментом, полученным при помощи аддитивных технологий методом селективного лазерного плавления (госкорпорация «Росатом», Россия) - 6 животным, нерезорбируемым углеродным наноструктурным имплантатом (УНИ, производство «Нанотехмедплюс», Россия) - 6 кроликам. Гематологические и биохимические исследования проводили до операции, в 3, 7, 14, 45, 90 сутки.

Периферическую венозную кровь для гематологического исследования у кроликов забирали утром из краевой вены уха в вакуумные пробирки Improvacuter (2,0 мл, содержащие 1,6 мг/мл EDTA-K2), для биохимического анализа - Improvacuter с активатором свертывания SiO. Гематологические исследования выполнялись на автоматическом анализаторе KX-21N (Sysmex, Япония; регистрационное удостоверение ФСЗ №2003/989) с использованием оригинальных реагентов Sysmex и контрольных материалов ParaCheck (Streck, USA). Определяли общее количество лейкоцитов, эритроцитов, тромбоцитов, уровень гемоглобина в периферической крови.

Для оценки параметров костного метаболизма в сыворотке периферической крови методом иммуноферментного анализа определяли концентрацию N-MID Остеокальцин (маркер костеобразования), костный изофермент щелочной фосфатазы (маркер костеобразования), С-концевые телопептиды коллагена I типа (маркер остеорезорбции).

Для контроля поствитально изучались костные шлифы с имплантированным остеозамещающим материалом методом сканирующей электронной микроскопии (JSM-6390LV фирмы Jeol с микроанализатором Cameca SX100 и FEG SEM ZEISS CrossBeam AURIGA) и рентгеновского спектрального микроанализа (метод позволяет оценить отношения кальция к фосфору по процентному соотношению в точке аттестации), при которых можно было объективно оценить присутствие или отсутствие интеграции остеозамещающего материала в костном интерфейсе, при этом параметр «интеграция» имел бинарное категориальное значение: 1 - интеграция присутствует, 0 - интеграция отсутствует.

По результатам проведения сканирующей электронной микроскопии с рентгеновским спектральным микроанализом все животные были разделены на две группы: 1 группа - 19 кроликов, имевшие успешную остеоинтеграцию, (в поле сканирующего микроскопа отмечался непрерывный переход имплантант-кость; показатель усредненного значения кальций-фосфорного отношения вблизи имплантанта ≥1,55), 2 группа - 8 животных, которые демонстрировали отсутствие истеоинтеграции (в поле сканирующего микроскопа отмечался прерывный переход имплантант-кость с фокусами фиброзной соединительно-тканной капсулы; показатель усредненного значения кальций-фосфорного отношения вблизи имплантанта <1,55).

Периферическую венозную кровь для гематологического исследования у кроликов забирали утром из краевой вены уха в вакуумные пробирки Improvacuter (2,0 мл, содержащие 1,6 мг/мл EDTA-K2), для биохимического анализа - Improvacuter с активатором свертывания SiO. Гематологические исследования выполнялись на автоматических анализаторах KX-21N (Sysmex, Япония; регистрационное удостоверение ФСЗ №2003/989) с использованием оригинальных реагентов Sysmex и контрольных материалов ParaCheck (Streck, USA).

Иммуноферментный анализ проводили с использованием наборов Cloud-Clone Corp. Enzyme-linked Immunosorbent Assay Kit. Organism Species. Для выполнения анализа применяли комплекс, включающий планшетный иммуноферментный анализатор Stat Fax 3200 (Awareness Technology, Inc., USA; регистрационное удостоверение ФСЗ №2004/1258), вошер Stat Fax 2600 (Medica, USA; регистрационное удостоверение ФСЗ №2004/1258), шейкер Elmi (Elmi Ltd. Латвия, регистрационное удостоверение ФСЗ №2006/1424).

Из исследованных гематологических и биохимических показателей наиболее информативными для правильной классификации экспериментальных животных в группы с успешной и неуспешной остеоинтеграции были: С-концевые телопептиды (маркер остеорезорбции), концентрация остеокальцина (маркер остеогенеза), количество лейкоцитов в периферической крови. Построение регрессионной модели позволило определить формулу:

ИОИ=1,02663-0,42041×СКТ+0,19513×ОК-0,67896×ЛЦ,

где ИОИ - индекс остеоинтеграции,

СКТ - концентрация С-концевых телопептидов (нг/мл),

ОК - концентрация остеокальцина (нг/мл),

ЛЦ - количество лейкоцитов в периферической крови (×10-9/л).

Оценка приемлемости модели показала ее значимость (р=0,000127). Коэффициент детерминации R2=0,6006.

При значении индекса остеоинтеграции ≥0,5 судят об успешной остеоинтеграции имплантата на сроке 45 суток с момента аугментации. Примеры использования.

1. Аугментация кролику породы Шиншилла проведена резорбируемым ксенопластичестическим материалом «Остеоматрикс» (производство «Коннектбиофарм», Россия). Забор крови из краевой вены уха на 45 сутки, проведение лабораторных исследований. Концентрации С-концевых телопептидов - 0,25 нг/мл, концентрация остеокальцина - 18 нг/мл, количество лейкоцитов в периферической крови - 15,7×109/л.

ИОИ=1,02663-0,42041×0,25+0,19513×18-0,67896×15,7=0,12 (95%ДИ=0,24; 0,49).

Остеоинтеграция неудовлетворительная (в поле сканирующего микроскопа отмечался прерывный переход имплантант-кость с фокусами фиброзной соединительнотканной капсулы; показатель усредненного значения кальций-фосфорного отношения вблизи имплантанта равен 1,18).

2. Аугментация кролику породы Шиншилла проведена нерезорбируемым пористым титановым аугментом, полученным при помощи аддитивных технологий методом селективного лазерного плавления. Забор крови из краевой вены уха на 45 сутки, проведение лабораторных исследований. Концентрации С-концевых телопептидов - 0,015 нг/мл, концентрация остеокальцина - 39нг/мл, количество лейкоцитов в периферической крови - 9,5×109/л.

ИОИ=1,02663-0,42041×0,015+0,19513×39-0,67896×9,5=1,01 (95%ДИ=0,75; 1,27).

Остеоинтеграция удовлетворительная (в поле сканирующего микроскопа отмечался непрерывный переход имплантант-кость; показатель усредненного значения кальций-фосфорного отношения вблизи имплантанта равен 2,02).

Таким образом, предлагаемый способ обеспечивает возможность качественной и достоверной оценки результатов исследования интеграции остеозамещающего материала в эксперименте и может быть использован при моделировании перелома костей и имплантации аугментов из резорбируемых и

нерезорбируемых остеопластических материалов экспериментальным животным.

Используемая литература

1. Воробьев А.А., Шемонаев В.И., Михальченко Д.В., Величко А.С. Современные методы оценки остеоинтеграции дентальных внутрикостных имплантатов (литературный обзор) // Актуальные вопросы экспериментальной, клинической и профилактической стоматологии: сборник научных трудов Волгоградского государственного медицинского университета. - Волгоград: ООО «Бланк», 2008. (Выпуск No 1, Том No 65).

2. Дронов М.В. Применение резонансно-частотного метода для оценки стабильности и остеоинтеграции дентальных-имплантатов: автореф. дисс…канд. мед. наук. - М., 2007. - 25 с.

Способ оценки интеграции остеозамещающего материала в эксперименте, отличающийся тем, что в периферической крови экспериментального животного-кролика на 45 сутки после имплантации аугмента определяют значения концентрации С-концевых телопептидов коллагена I типа, концентрации остеокальцина и количество лейкоцитов и рассчитывают индекс остеоинтеграции по формуле

ИОИ=1,02663-0,42041×СКТ+0,19513×ОК-0,67896×ЛЦ,

где ИОИ - индекс остеоинтеграции; СКТ - концентрация С-концевых телопептидов, нг/мл; ОК - концентрация остеокальцина, нг/мл; ЛЦ - количество лейкоцитов в периферической крови, ×10-9/л, и при значении ИОИ≥0,5 судят об успешной остеоинтеграции имплантата на сроке 45 суток с момента аугментации.



 

Похожие патенты:

Настоящее изобретение относится к области иммунологии. Предложены антитело и его антигенсвязывающий фрагмент, способные к специфическому связыванию с PD-L1.
Изобретение относится к медицине и клинической психологии, в частности к психотерапии и психологической коррекции, и раскрывает способ диагностики эндогенной интоксикации после психологической коррекции.

Изобретение относится к медицине и касается мышиной гибридомы SI-CLP, клона 3D4 – продуцента моноклонального антитела, узнающего белок SI-CLP методом иммуноферментного анализа, а также в неопластических клетках глиобластомы и в клетках других органов, содержащих данные антигены, методами иммуноцитохимии, иммуногистохимии, иммуноблотирования и иммунофлуоресценции, полученной путем иммунизации мышей линии Balb/c полноразмерным рекомбинантным белком SI-CLP человека и слиянием сенсибилизированных спленоцитов иммунизированных мышей с клетками мышиной миеломы линии sp2/0 с помощью 50%-ного раствора полиэтиленгликоля с молекулярной массой 1500.
Изобретение относится к медицине, а именно к экспериментальной медицине, и может быть использовано для раннего выбора тактики ведения животного с кишечной непроходимостью в эксперименте.

Изобретение относится к области медицины, в частности к дерматологии, и предназначено для прогнозирования риска возникновения кожной патологии в виде меланоза или дисхромии, ассоциированной с избыточной контаминацией мышьяком.

В настоящем изобретении предложен способ определения эффективности композиций, применяемых для лечения заболеваний суставных хрящей у млекопитающих. Способ включает в себя определение изменения уровней биомаркера с-концевого поперечно-сшитого телопептида коллагена типа II (СТХ-II) у млекопитающего до физического упражнения и после физического упражнения, затем введение млекопитающему композиции, применяемой для лечения заболеваний суставных хрящей, и определение изменения уровней упомянутого биомаркера у млекопитающего до физического упражнения и после физического упражнения.

Изобретение относится к области биохимии, в частности к культуральной среде для увеличения в количестве популяции взрослых стволовых клеток, где указанная культуральная среда содержит базальную среду, к которой добавлены агонист Wnt, ингибитор BMP и один или несколько ингибиторов TGF-бета, которые представляют собой ингибитор ALK5, ALK4 и/или ALK7, а также к ее применению для увеличения в количестве стволовой клетки, популяции стволовых клеток или фрагмента ткани или органоида, содержащих стволовую клетку или популяцию стволовых клеток.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования риска развития окклюзий ретинальных вен у женщин после перенесенной преэклампсии.

Изобретение относится к области биотехнологии, конкретно к полипептиду, содержащему последовательность EX2X3X4AX6X7EIX10Х11LPNLX16X17X18QX20X21AFIX25X26LX28X29X30PX32QSX35X36LLX39EAKKLX45X46X47Q, и обладающему повышенной стабильностью.

Изобретение относится к области медицины, а именно к способу прогнозирования сепсиса после кардиохирургических операций, проводимых в условиях искусственного кровообращения.

Группа изобретений относится к биологии и может быть использована для отслеживания миграции клеток при изучении поведения животных. Для этого в среду для культивирования эукариотических клеток добавляют люциферин.

Изобретение относится к медицине, а именно к урологии и гематологии, и может быть использовано для прогнозирования гнойного пиелонефрита путем исследования венозной крови.

Изобретение относится к области медицины, в частности к дерматологии, и предназначено для прогнозирования риска возникновения кожной патологии в виде меланоза или дисхромии, ассоциированной с избыточной контаминацией мышьяком.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования риска развития окклюзий ретинальных вен у женщин после перенесенной преэклампсии.

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано для прогнозирования риска развития окклюзий ретинальных вен у женщин после перенесенной преэклампсии.

Изобретение относится к медицине, а именно к детской кардиологии и инфекционным болезням, и может быть использовано для оценки степени риска неблагоприятных исходов инфекционных поражений миокарда у детей и подростков.

Изобретение относится к области биотехнологии, конкретно к полипептиду, содержащему последовательность EX2X3X4AX6X7EIX10Х11LPNLX16X17X18QX20X21AFIX25X26LX28X29X30PX32QSX35X36LLX39EAKKLX45X46X47Q, и обладающему повышенной стабильностью.

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для прогнозирования эффективности таргетной терапии цетуксимабом у больных плоскоклеточным раком языка и слизистой дна полости рта.

Изобретение относится к области биохимии, в частности к способу отбора одного или нескольких антител, стабильных к деградации. Указанный способ включает стадии, при которых: а) берут два или более антител, б) у каждого остатка Asn и Asp в Fv домене антитела определяют конформационную подвижность Сα-атома с использованием ансамбля моделей, основанных на гомологии, в) у каждого остатка Asn и Asp в Fv домене антитела определяют размер аминокислотного остатка, прилегающего к остатку Asn или Asp со стороны С-конца, г) выбирают одно или несколько антител, у которых Сα-атом является конформационно неподвижным и у которого со стороны С-конца к Asn или Asp прилегает аминокислотный остаток с доступной для растворителя площадью поверхности, составляющей 111 или более, где конформационная подвижность представляет собой среднеквадратичное отклонение (RMSD) соответствующих Сα-атомов остатков Asn/Asp в ансамбле моделей, основанных на гомологии.

Изобретение относится к области биохимии, в частности к способу отбора одного или нескольких антител, стабильных к деградации. Указанный способ включает стадии, при которых: а) берут два или более антител, б) у каждого остатка Asn и Asp в Fv домене антитела определяют конформационную подвижность Сα-атома с использованием ансамбля моделей, основанных на гомологии, в) у каждого остатка Asn и Asp в Fv домене антитела определяют размер аминокислотного остатка, прилегающего к остатку Asn или Asp со стороны С-конца, г) выбирают одно или несколько антител, у которых Сα-атом является конформационно неподвижным и у которого со стороны С-конца к Asn или Asp прилегает аминокислотный остаток с доступной для растворителя площадью поверхности, составляющей 111 или более, где конформационная подвижность представляет собой среднеквадратичное отклонение (RMSD) соответствующих Сα-атомов остатков Asn/Asp в ансамбле моделей, основанных на гомологии.

Изобретение относится к медицине, а именно к детской кардиологии и инфекционным болезням, и может быть использовано для оценки степени риска неблагоприятных исходов инфекционных поражений миокарда у детей и подростков.
Наверх