Пьезоэлектрический измерительный преобразователь

Изобретение относятся к контрольно-измерительной технике, а именно к устройствам электрических измерений неэлектрических величин, и может быть использовано для измерения виброускорений промышленных объектов, а также для вибрационного анализа и вибромониторинга промышленного оборудования в условиях высоких промышленных наводок и помех. Пьезоэлектрический измерительный преобразователь содержит пьезодатчик и усилитель, состоящий из двух частей, первая из которых размещена в корпусе преобразователя и включает усилительный элемент, общий провод и сигнальный провод, а вторая часть усилителя расположена вне корпуса и включает источник тока, катод которого соединен с сигнальным проводом и с регистратором, при этом анод источника тока соединен с источником питания. В качестве усилительного элемента использован операционный усилитель, дополнительно введены стабильный источник напряжения, четыре резистора и конденсатор, соединенные согласно схеме устройства на фиг.1. Техническим результатом является создание пьезоэлектрического измерительного преобразователя с фиксированным коэффициентом передачи и высокой температурной стабильностью выходных параметров. 1 ил.

 

Изобретение относится к контрольно-измерительной технике, а именно к устройствам электрических измерений неэлектрических величин и может быть использовано для измерения параметров динамических механических величин. [МПК G01Р15/09, G01Н10/08]

Известны пьезоэлектрические преобразователи, (см. описания изобретений к авторским свидетельствам: № 885899 от 16.07.1979, МКИ G01P 15/09, «Пьезоэлектрический преобразователь», опубл. 30.10.1981 и RU № 2106642 С1 от 22.03.1996, МПК G01P 15/09, «Пьезоэлектрический преобразователь», опубл. 10.03.1998.), состоящие из корпуса со стойкой, имеющей резьбу на верхнем конце, а также пьезоэлектрических шайб и инерционной массы, которые надеты на стойку, пьезоэлектрические шайбы и инерционная масса прижаты при помощи гайки к основанию преобразователя.

Недостатком таких устройств является высокая чувствительность к промышленным наводкам и помехам. Кроме того, для передачи сигнала необходимо использовать антивибрационный кабель, имеющий высокую стоимость. Эти недостатки не позволяют широко использовать преобразователи для вибродиагностики промышленного оборудования, эксплуатируемого в условиях высоких электромагнитных наводок и помех.

Известен пьезоэлектрический измерительный преобразователь, (см. описание изобретения к патенту RU: № 2400867 C1 от 04.03.2009, МПК H01L41/08, G01P 15/09, «Пьезоэлектрический измерительный преобразователь», опубл. 27.09.2009.), содержащий пьезоэлектрические элементы и усилитель, состоящий из двух частей, первая из которых размещена в корпусе преобразователя и включает усилительный элемент, общий провод, сигнальный провод, первый электрод пьезоэлектрических элементов соединен с входом усилительного элемента, а вторая часть усилителя расположена вне корпуса и включает источник тока, катод которого соединен с сигнальным проводом и с регистратором, при этом анод источника тока соединен соответственно с первым выводом источника питания, второй вывод которого соединен с общим проводом. В качестве усилительного элемента в прототипе используется полевой транзистор. Использование электронных компонентов позволяет поднять чувствительность устройства, снизить уровень наводок, использовать обычный кабель для передачи информации.

Основной технической проблемой прототипа являются большой разброс коэффициента передачи, низкая температурная стабильность выходного переменного сигнала и высокий дрейф выходного постоянного напряжения, обусловленные тем, что параметры полевых транзисторов и, следовательно, коэффициент передачи схемы имеют большой статистический разброс, а также сильную зависимость от температуры и величины рабочего тока источника тока.

Задачей изобретения является устранение недостатков прототипа.

Техническим результатом изобретения является создание пьезоэлектрического измерительного преобразователя с фиксированным коэффициентом передачи и высокой температурной стабильностью выходных параметров.

Указанный технический результат изобретения достигается за счет того, что пьезоэлектрический измерительный преобразователь, содержащий пьезодатчик и усилитель, состоящий из двух частей, первая из которых размещена в корпусе пьезоэлектрического измерительного преобразователя и включает усилительный элемент, общий провод, сигнальный провод, первый электрод пьезодатчика соединен с входом усилительного элемента, а вторая часть усилителя расположена вне корпуса и включает источник тока, катод которого соединен с сигнальным проводом и с регистратором, анод источника тока соединен с первым выводом источника питания, второй вывод которого соединен с общим проводом, отличающийся тем, что в качестве усилительного элемента использован операционный усилитель, дополнительно введены стабильный источник напряжения, вывод положительного питания которого соединен с сигнальным проводом, вывод отрицательного питания с общим проводом измерителя, четыре резистора и конденсатор, первый вывод которого соединен с общим проводом, второй вывод соединен с сигнальным проводом, первый вывод первого резистора соединен со вторым электродом пьезодатчика, с выходом стабильного источника напряжения и с первым выводом второго резистора, второй вывод первого резистора соединен с первым электродом пьезодатчика и с неинвертирующим входом операционного усилителя, второй вывод второго резистора соединен с первыми выводами третьего и четвертого резисторов и с инвертирующим входом операционного усилителя, второй вывод третьего резистора соединен с общим проводом, второй вывод четвертого резистора соединен с выходом операционного усилителя, с выводом положительного питания операционного усилителя и с сигнальным проводом, а вывод отрицательного питания операционного усилителя соединен с общим проводом.

Краткое описание чертежей.

На фиг.1 приведена схема пьезоэлектрического измерительного преобразователя, в котором реализовано предлагаемое техническое решение.

На фигуре обозначено: 1 – пьезодатчик, 2 – резистор, 3 – высокостабильный источник напряжения, 4 и 5 – резисторы, 6 – операционный усилитель, 7 – резистор, 8 – конденсатор, 9 – источник тока, 10 – источник питания, 11 – сигнальный провод, 12 – общий провод, 13 – резистор.

Осуществление изобретения.

Устройство содержит пьезодатчик 1 и усилитель, состоящий из двух частей, первая из которых размещена в корпусе преобразователя и включает операционный усилитель 6, высокостабильный источник напряжения 3 резисторы 2, 4 , 5, 7, конденсатор 8, общий провод 12 , сигнальный провод 11, первый вывод первого резистора 2 соединен со вторым электродом пьезодатчика 1, с выходом высокостабильного источника напряжения 3 и с первым выводом второго резистора 4, второй вывод первого резистора 2 соединен с первым электродом пьезодатчика 1 и с неинвертирующим входом 3 операционного усилителя 6, второй вывод второго резистора 4 соединен с первыми выводами третьего 5 и четвертого 7 резисторов и с инвертирующим входом 4 операционного усилителя 6, второй вывод третьего резистора 5 соединен с общим проводом 12, второй вывод четвертого резистора 7 соединен с выходом 1 операционного усилителя 6, с выводом положительного питания 5 операционного усилителя 6 и с сигнальным проводом 11, а вывод отрицательного питания 2 операционного усилителя 6 соединен с общим проводом 12, вторая часть усилителя расположена вне корпуса и включает источник тока 9, катод которого соединен с сигнальным проводом 11 и с регистратором 13, при этом анод источника тока 9 соединен соответственно с первым выводом источника питания 10, второй вывод которого соединен с общим проводом 12.

Преобразователь работает следующим образом (см. фиг. 1). При наличии ускорения вдоль оси чувствительности пьезодатчика 1 в нем в результате механического напряжения возникает поляризация, а на обкладках пьезодатчика возникает заряд, а, следовательно, напряжение, которое подается на вход усилителя. Используемый в прототипе полевой транзистор и схема его включения не обеспечивают постоянства коэффициента передачи и достаточной температурной стабильности.

В предлагаемом устройстве в соответствии с формулой изобретения применен операционный усилитель 6 и специальная схема его включения, обеспечивающая питание операционного усилителя 6 и вывод выходного сигнала по одному и тому же сигнальному проводу 11. Схема питается от стабильного источника тока 9. Потребляемый источником напряжения 3 и операционным усилителем 6 ток более чем на порядок меньше тока, выдаваемого источником тока 9. Поэтому практически весь ток, получаемый с источника тока 9, обеспечивает передачу сигнала по высокой частоте в сигнальный провод 11 . Величины третьего 5 и четвертого резистора 7 рассчитываются так, чтобы обеспечить необходимое постоянное напряжение на сигнальном проводе 11, не зависящее от температуры и тока источника тока 9 .

Выходное напряжение устройства по постоянному току равно

Здесь: Uout - постоянное напряжение на выходе операционного усилителя 6,

V1 – выходное напряжение высокоточного источника напряжения 3,

R7 и R5 – соответственно, четвертое 7 и третье 5 сопротивления.

Резисторы второй 4, третий 5 и четвертый 7 обеспечивают требуемый коэффициент преобразования по переменному сигналу пьезоэлектрического измерительного преобразователя. Переменное напряжение с вывода 1 пьезоэлементов 1 поступает на вход 3 операционного усилителя 6 усиливается до необходимой величины Uout и с выхода 1 операционного усилителя 6 передается на сигнальный провод 11 и далее на регистратор 13. Таким образом, по сигнальному проводу 11 подается питание на схему и с него же передается информативное переменное напряжение сигнала, пропорциональное ускорению пьезодатчика 1, на регистратор 13. Все элементы схемы имеют высокую температурную стабильность, а коэффициент усиления схемы не зависит от температуры и тока.

Выходное напряжение устройства по переменному току равно

Здесь: Uout - переменное напряжение на выходе операционного усилителя 6,

a – ускорение пьезодатчика 1, [ м/с2 ] – измеряемая величина,

k –чувствительность пьезодатчика 1, [ пКл/м*с-2], (пКл - пикокулон),

С- емкость пьезодатчика 1 [ пФ],

R4 – второе 4 сопротивление.

Нижняя граничная частота схемы определяется сопротивлением первого резистора 2 и емкостью пьезодатчика 1. Конденсатор 8 обеспечивает устойчивость схемы и определяет верхнюю граничную частоту устройства.

Таким образом, решена цель изобретения – создание пьезоэлектрического измерительного преобразователя, который обеспечивает фиксированный, независимый от температуры и тока коэффициент передачи и высокую температурную стабильность выходных параметров.

Все примененные узлы и элементы широко описаны в технической литературе и легко могут быть реализованы.

В целях подтверждения осуществимости заявленного устройства и достигнутого технического результата изготовлены из нержавеющей стали и испытаны пять опытных образцов пьезоэлектрических измерительных преобразователей, построенных на основе пьезокерамики ЦТС83Г. Чувствительность пьезодатчика 2,7 пКл/м∙с-2., емкость 3000 пФ. Все эти пьезоэлектрические измерительные преобразователи имеют, встроенные платы, на которых реализована первая часть электрической схемы фиг. 1. В качестве источника напряжения 3 применен опорный источник фирмы MAXIM Max6035AAUR25 c выходным напряжением 2.5 В. Первый резистор 2 имеет номинал 47 Мом. Второй 4 имеет номинал 130 К и третий резисторы 5 - 287 Ком. Величина четвертого резистора 7 выбрана 1 Мом. Операционный усилитель производства фирмы Analog Device AD8663ACPZ.

Выходное постоянное напряжение на сигнальном проводе 11 равно 11,2 В. Конденсатор 9 NPO имеет емкость 6800пФ и устраняет самовозбуждение усилителя. Вторая часть схемы реализована в отдельном корпусе. В качестве источника тока 9 с выходными токами от 2,0, мА до 12 ма использована микросхема LM334M фирмы National Semiconductor. В качестве источника питания 10 применен источник АКИП1102. Изготовленные устройства испытывались в температурном диапазоне от -40С до +85 С в климатической камере на вибростенде в широком диапазоне вибрационных частот. Получены следующие технические характеристики при напряжении питания 24 в.

Коэффициент преобразования 100мВ/g

Максимальная амплитуда гармонического сигнала ± 5 В при коэффициенте нелинейных искажений менее 1 % в диапазоне частот 5 Гц – 10 кГц.

Температурная погрешность коэффициента усиления ± 5% в диапазоне температур от минус 40 до плюс 85° С, что соответствует погрешности коэффициента преобразования пьезоэлементов.

Уход постоянного напряжения на сигнальном проводе в диапазоне температур минус 40 до плюс 85° С и выходными токами от 2,0, мА до 12 ма не более 50мВ

Проведенные испытания показали осуществимость заявленного устройства, подтвердили его преимущества и практическую ценность.

Пьезоэлектрический измерительный преобразователь может быть использован для измерения параметров динамических механических величин, в том числе может широко применяться для вибрационного анализа и вибромониторинга промышленного оборудования.

Ниже раскрывается наличие причинно-следственной связи между совокупностью существенных признаков заявляемого изобретения и достигаемым результатом.

Во-первых, впервые предложено устройство пьезоэлектрического преобразователя с встроенным усилителем, выполненным на операционном усилителе по схеме, в которой питание и выходной сигнал передаются по одному и тому же сигнальному проводу.

Во-вторых, применение устройства по предложенной схеме позволяет сделать коэффициент передачи устройства высокостабильным, зависящим только от соотношения номиналов резисторов.

В-третьих, применение такого устройства позволяет существенно увеличить температурную стабильность выходных параметров за счет сверхмалых величин токов смещения современных операционных усилителей и температурно стабильного коэффициента передачи.

В – четвертых, выходные напряжение и коэффициент передачи схемы не зависят от величины заданного тока источника тока.

Таким образом, новая совокупность всех существенных признаков в заявляемом устройстве обеспечивает достижение следующего результата: питание и выходной сигнал передаются по одному и тому же сигнальному проводу, фиксированный коэффициент передачи сигнала, независимость постоянного выходного напряжения от величины выходного тока источника тока и высокая температурная стабильность всех выходных параметров.

Пьезоэлектрический измерительный преобразователь, содержащий пьезодатчик и усилитель, состоящий из двух частей, первая из которых размещена в корпусе пьезоэлектрического измерительного преобразователя и включает усилительный элемент, общий провод, сигнальный провод, первый электрод пьезодатчика соединен с входом усилительного элемента, а вторая часть усилителя расположена вне корпуса и включает источник тока, катод которого соединен с сигнальным проводом и с регистратором, анод источника тока соединен с первым выводом источника питания, второй вывод которого соединен с общим проводом, отличающийся тем, что в качестве усилительного элемента использован операционный усилитель, дополнительно введены стабильный источник напряжения, вывод положительного питания которого соединен с сигнальным проводом, вывод отрицательного питания с общим проводом измерителя, четыре резистора и конденсатор, первый вывод которого соединен с общим проводом, второй вывод соединен с сигнальным проводом, первый вывод первого резистора соединен со вторым электродом пьезодатчика, с выходом стабильного источника напряжения и с первым выводом второго резистора, второй вывод первого резистора соединен с первым электродом пьезодатчика и с неинвертирующим входом операционного усилителя, второй вывод второго резистора соединен с первыми выводами третьего и четвертого резисторов и с инвертирующим входом операционного усилителя, второй вывод третьего резистора соединен с общим проводом, второй вывод четвертого резистора соединен с выходом операционного усилителя, с выводом положительного питания операционного усилителя и с сигнальным проводом, а вывод отрицательного питания операционного усилителя соединен с общим проводом.



 

Похожие патенты:

Изобретение относится к области измерительной техники, а именно к измерительным элементам линейного ускорения. Сущность изобретения заключается в том, что основание частотного датчика линейных ускорений снабжено системой пружин плоскопараллельного подвеса, образованной пазами, выполненными в основании со стороны крепления датчика к объекту, симметричными пазами, выполненными с другой стороны основания, и фигурными пазами, а все пазы, разделяют основание на три части, соединенные между собой плоскими пружинами, причем одна часть расположена между двумя другими и к ней крепится рамочный корпус, две другие части крепятся к объекту.

Изобретение относится к области измерительной техники, в частности к датчикам измерения параметров механических колебаний, и может быть использовано для измерения параметров механических колебаний различных объектов в машиностроении.

Комплекс устройств относится к области приборостроения и может быть использован для дистанционного контроля работоспособности средств измерения параметров механических колебаний по преимуществу высокотемпературных объектов.

Использование: для изготовлении узла пьезоэлектрического чувствительного элемента акселерометра. Сущность изобретения заключается в том, что устройство представляет собой многокристальный модуль, включающий несколько плат с размещенными на них электрическими элементами и интерпозерами, при этом чувствительный пьезоэлемент размещен на гибкой плате и физически находится в центре сквозных металлизированных отверстий всех плат многокристального модуля.

Изобретение относится к области приборостроения и может быть использовано для дистанционного контроля работоспособности средств измерения параметров механических колебаний объектов.

Изобретение относится к устройству (1) для измерения ускорения, содержащему пьезоэлектрическую систему (2), сейсмическую массу (3) и систему (4) предварительного напряжения.

Изобретение относится к устройству (1) для измерения ускорения, содержащему пьезоэлектрическую систему (2), сейсмическую массу (3) и систему (4) предварительного напряжения.

Группа изобретений относится к устройству для измерения ускорения. Устройство для измерения ускорения содержит пьезоэлектрическую систему, сейсмическую массу и систему предварительного напряжения, при этом сейсмическая масса имеет два элемента массы, положительные пьезоэлектрические заряды электрически снимаются с первого элемента массы в качестве сигналов ускорения, отрицательные пьезоэлектрические заряды электрически снимаются со второго элемента массы в качестве сигналов ускорения.

Группа изобретений относится к устройству для измерения ускорения. Устройство для измерения ускорения содержит пьезоэлектрическую систему, сейсмическую массу и систему предварительного напряжения, при этом сейсмическая масса имеет два элемента массы, положительные пьезоэлектрические заряды электрически снимаются с первого элемента массы в качестве сигналов ускорения, отрицательные пьезоэлектрические заряды электрически снимаются со второго элемента массы в качестве сигналов ускорения.

Изобретение относится к измерительной технике и предназначено для определения параметров ударных и вибрационных ускорений. Сущность изобретения заключается в том, что пьезоэлектрический датчик содержит корпус, опору, при этом в месте закрепления опоры формируется механический фильтр из эластичного электропроводящего материала, толщина которого определяется нормированным размером частиц, входящих в состав клея, кроме того, пьезоэлемент выполнен из сегнетожесткой пьезокерамики на основе ЦТС (цирконат титанат свинца) с пористостью 15-60%, а инерционный элемент выполнен из вольфрама или вольфрамового сплава, при этом пьезоэлемент и инерционный элемент закреплены при помощи эластичного электропроводящего клеевого слоя, также в основании корпуса, во внутренней полости, выполнен кольцевой антидеформационный вырез.
Наверх