Способ распределенного усиления мощности оптических сигналов для систем сравнения и синхронизации шкал времени и оптоволоконных рефлектометров

Изобретение относится к способам сравнения и синхронизации шкал времени удаленных объектов с применением оптоволоконной линии связи, соединяющей объекты, оптоволоконным рефлектометрам. Способ включает в себя ввод с помощью объединителя излучения накачки ВКР-усилителя в исследуемую волоконно-оптическую линию. Объединитель располагается между разветвителем и циркулятором модифицированного блока разветвителей-объединителей БРО-У. Достигаемым техническим результатом при использовании заявленного способа является увеличение дистанции работы систем сравнения и синхронизации шкал времени или оптических рефлектометров при том, что погрешности определения моментов времени излучения оптических импульсов в исследуемую, в случае рефлектометрии, или соединяющую удаленные объекты в случае синхронизации шкал времени, волоконно-оптическую линию связи, и погрешности определения моментов времени приема отраженных импульсов остаются неизменными. 1 ил.

 

Известны способ и устройство сравнения и синхронизации шкал времени между наземными пунктами с помощью системы одно- и двухсторонних сравнений шкал времени (С.С.Донченко, О.В. Колмогоров, Д.В. Прохоров. Система одно- и двухсторонних сравнений шкал времени. Измерительная техника, №1, 2015, Патент РФ №2547662 Способ сличения шкал времени и устройство для его осуществления).

Устройство содержит на одном из пунктов импульсный генератор, передающий модуль, блок разветвителей-объединителей, фотоприемный модуль, таймер событий, компьютер, промежуточный генератор; на втором пункте полупрозрачное зеркало, фотоприемный модуль, таймер событий, компьютер, волоконно-оптическую линию, соединяющую первый и второй пункты.

К достоинствам данного устройства относится то, что с помощью блока разветвителей-объединителей производится привязка оптических, а не электрических импульсов к соответствующей шкале времени, что исключает влияние случайной погрешности, вызванной нестабильностью задержки при электронно-оптическом преобразовании. Недостатком данного устройства является то, что на фотоприемник поступает оптический импульс, прошедший двойной путь по волоконно-оптической линии связи (ВОЛС) и частично отразившийся от ретрорефлектора на втором объекте, что существенно снижает мощность импульса и ограничивает протяженность ВОЛС.

Также известен оптический рефлектометр (Д.В. Прохоров, О.В. Колмогоров, С.С. Донченко, С.Г. Буев. Патент РФ №2655046 Оптический рефлектометр).

Рефлектометр содержит импульсный генератор, к которому подключен передающий лазерный модуль, оптоволоконный разветвитель, один из выходов которого соединен с одним из входов/выходов оптоволоконного циркулятора, второй выход соединен с одним из входов оптоволоконного объединителя. Выход объединителя соединен с фотоприемным устройством, выход которого соединен с измерителем временных интервалов, информационный выход которого соединен с персональным компьютером. Второй вход объединителя через оптическую линию задержки соединен с выходом циркулятора, второй вход-выход которого заканчивается разъемом для подключения ВОЛС.

Особенностью и преимуществом указанного устройства является то, что использование оптической линии задержки устраняет мертвую зону рефлектометра, использование объединителя перед фотоприемным устройством позволяет фиксировать время излучения зондирующего импульса и приема обратного в одном фотоприемном тракте и одним измерителем временных интервалов, что повышает точность локализации неоднородностей в ВОЛС.

Недостатком данного устройства является то, что на фотоприемник поступает оптический импульс, прошедший двойной путь по волоконно-оптической линии связи (ВОЛС) и частично отразившийся от конца линии, что существенно снижает мощность импульса и ограничивает протяженность ВОЛС.

Также известен способ усиления оптических сигналов с помощью усилителя Рамана или ВКР-усилителя (Леонов А.В., Наний О.Е., Трещиков В.Н. Усилители на основе вынужденного комбинационного рассеяния в оптических системах связи. Прикладная фотоника, 2014, №1. - С. 26-49).

Особенностью и преимуществом указанного способа является то, что усиление сигнала за счет энергии волны накачки происходит по всей длине волокна, которое вместе с источником накачки представляет собой распределенный ВКР-усилитель. Слабое поглощение оптического излучения на длине волны накачки обеспечивает проникновение накачки на большую дальность, т.е. усиление оказывается распределенным вдоль волокна. В этом случае удается достичь более равномерного распределения мощности оптического импульса вдоль направления распространения, при этом энергия сигнала не опускается до уровня шумовых компонент и, в то же время, не достигает уровня, при котором становятся существенными нелинейные искажения сигналов вследствие самовоздействия.

Недостатком данного способа является то, что в волоконно-оптических линиях связи применяется встречная схема, т.е. блок лазеров накачки устанавливается в конце ВОЛС, что в ряде случаев неприменимо в системах сравнения и синхронизации шкал времени и оптических рефлектометрах.

Особенностью и преимуществом заявленного способа является то, что с помощью модифицированного блока разветвителей-объединителей (БРО-У), включающего ВКР-усилитель, излучение накачки поступает в ВОЛС, при этом происходит усиление как импульсов поступающих в ВОЛС, так и распространяющихся в обратном направлении. Использование коротких одиночных импульсов обеспечивает отсутствие вынужденного рассеяния Мандельштама - Бриллюэна (ВРМБ).

Достигаемым техническим результатом при использовании заявленного способа является увеличение дистанции работы систем сравнения и синхронизации шкал времени или оптических рефлектометров при том, что погрешности определения моментов времени излучения оптических импульсов в исследуемую, в случае рефлектометрии, или соединяющую удаленные объекты в случае синхронизации шкал времени, волоконно-оптическую линию связи, и погрешности определения моментов времени приема отраженных импульсов остаются неизменными.

Данный технический результат достигается за счет того, что ВКР-усилитель входит в состав модифицированного БРО-У, при этом излучение накачки поступает через циркулятор в ВОЛС и усиливает оптические импульсы, распространяющиеся как в прямом, так и в обратном направлении.

Изобретение поясняется чертежами.

На фиг. 1 - показана схема модифицированного блока разветвителей-объединителей БРО-У, который содержит разветвитель 1, на который поступают оптические импульсы ОИ1 с оптического генератора, выходы которого соединены с объединителем 2 и объединителем 3. Второй вход объединителя 3 соединен с блоком лазеров накачки ВКР-усилителя 4, а выход - с циркулятором 5. Вход-выход циркулятора 5 соединен с ВОЛС 6, а выход с объединителем 2, с выхода которого оптические импульсы ОИ2 и ОИ3 поступают на фотоприемное устройство.

Способ распределенного усиления мощности оптических сигналов реализуется следующим образом.

Оптический импульс ОИ1 проходит через разветвитель 1, часть мощности ОИ1 через объединитель 2 в виде импульса ОИ2 поступает на фотоприемник для фиксации времени излучения ОИ1. Основная часть мощности ОИ1 через объединитель 3 и циркулятор 5 поступает в ВОЛС 6. Через объединитель 3 в циркулятор 5 и ВОЛС 6 поступает излучение из блока лазеров накачки ВКР-усилителя 4. Часть мощности прямого импульса отражается от конца ВОЛС или ретрорефлектора, установленного на конце ВОЛС, и движется в обратном направлении. Во время прохождения прямого и обратного импульсов по ВОЛС происходит их усиление благодаря эффекту Рамана. Отраженный импульс ОИ3 поступает из ВОЛС 6 через циркулятор 5 и объединитель 2 на фотоприемник для фиксации времени его прихода.

Способ распределенного усиления мощности оптических сигналов в системах сравнения и синхронизации шкал времени и оптоволоконных рефлектометрах осуществляется путем ввода с помощью объединителя излучения накачки ВКР-усилителя, расположенного между разветвителем и циркулятором модифицированного блока разветвителей-объединителей БРО-У, в волоконно-оптическую линию, которая является исследуемой в случае рефлектометрии, или соединяющей удаленные объекты в случае синхронизации шкал времени, причем происходит усиление как оптических импульсов, излучаемых в линию, так и импульсов, отраженных от конца линии или ретрорефлектора на конце линии.



 

Похожие патенты:

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы Rз и волнового фронта сферической формы Ws(ρ).

Изобретение относится к анализу изображений. Технический результат заключается в расширении арсенала средств.

Продукт для определения одного или более оптических параметров линзы очков содержит один или более материальных компьютерочитаемых некратковременных носителей данных, содержащих исполняемые компьютером инструкции, выполненные с возможностью, при их исполнении по меньшей мере одним компьютерным процессором, обеспечивать выполнение указанным по меньшей мере одним компьютерным процессором этапов, включающих в себя: обработку изображения объекта, захваченного устройством для захвата изображения через указанную линзу, когда линза расположена между устройством для захвата изображения и объектом; определение первого расстояния между устройством для захвата изображения и объектом, когда изображение объекта захвачено устройством для захвата изображения; определение второго расстояния между линзой и объектом, когда изображение объекта захвачено устройством для захвата изображения; и определение одного или более оптических параметров указанной линзы на основании первого расстояния, второго расстояния и изображения объекта, захваченного через линзу.

Устройство измерения спектральной чувствительности радиометра большого диаметра включает источник монохроматических параллельных световых пучков большого диаметра, индикаторный прибор со сканированием пучка для измерения оптической мощности монохроматических параллельных пучков большого диаметра, эталонный радиометр большого диаметра, механизированный продольно перемещаемый стол и компьютер для обработки данных, используемый для вычисления спектральной чувствительности.

Изобретение относится к способам проведения испытаний оптико-электронных приборов (ОЭП), в частности звездных датчиков, на помехозащищенность от бокового излучения.

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах наблюдения, регистрации изображений, оптических измерительных системах, голографических системах, при проведении испытаний оптических систем для определения бесконтактным методом характеристик оптических систем, а именно фокусных расстояний и фокальных или рабочих отрезков.

Изобретение относится к области автоматизированных систем для длительного испытания узлов лазерных систем. Изобретение представляет собой станцию для оценки времени жизни тестируемого каскада усиления волоконного лазера, включающую задающий лазер для генерации лазерных импульсов, оптоволокно для передачи лазерных импульсов, первый предусилитель для усиления импульсов из задающего лазера и увеличения соотношения сигнала к шуму, акустооптический модулятор для управления частотой следования импульсов, второй предусилитель для усиления сигнала до уровня сигнала одного волоконного усилителя из каскада усиления, третий предусилитель для усиления сигнала до уровня нескольких волоконных усилителей из каскада усиления, разветвитель для деления сигнала из третьего предусилителя в равном соотношении и передачи его в тестируемые волоконные усилители, диоды накачки, создающие инверсную населенность в тестируемых волоконных усилителях, подключенные через электрические контакты к источникам тока, ответвители мощности с фотодиодами, которые служат для ответвления небольшой доли мощности на измерительные фотодиоды, АЦП, осуществляющий оцифровку сигнала с измерительных фотодиодов, и передающий сигнал на компьютер с управляющей программой, при этом станция включает управляющую плату, осуществляющую изменение параметров перечисленных устройств и сбор данных, а также блок данных.

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК) в процессе изготовления.

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК). Техническим результатом изобретения является расширение функциональных возможностей стенда за счет обеспечения возможности автоматизированного измерения параметров ТПВК, при которых необходимо выполнять изменение и измерение значения углов поворота и наклона оптической оси ТПВК относительно оптической оси ИКК.
Изобретение относится к волоконно-оптической технике связи и может быть использовано для определения потерь оптической мощности в разъемных соединениях оптических волокон.

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы Rз и волнового фронта сферической формы Ws(ρ).

Группа изобретений относится к устройству и способу для измерения параметров фазовых элементов. Устройство для измерения оптических свойств тестируемого элемента, выбранного из группы, включающей фазовые элементы и оптические волокна, и способ, выполненный посредством указанного устройства, содержит низкокогерентный источник света, подключенный к входному оптоволоконному соединителю, разделяющему свет от низкокогерентного источника света на опорное плечо и измерительное плечо, детектор, сконфигурированный для приема света от опорного плеча и измерительного плеча, при этом по меньшей мере одно из опорного и измерительного плечей содержит оптический элемент, расположенный на линейном трансляторе, причем указанный оптический элемент выбран из группы, включающей первый и второй коллиматоры и зеркало.

Продукт для определения одного или более оптических параметров линзы очков содержит один или более материальных компьютерочитаемых некратковременных носителей данных, содержащих исполняемые компьютером инструкции, выполненные с возможностью, при их исполнении по меньшей мере одним компьютерным процессором, обеспечивать выполнение указанным по меньшей мере одним компьютерным процессором этапов, включающих в себя: обработку изображения объекта, захваченного устройством для захвата изображения через указанную линзу, когда линза расположена между устройством для захвата изображения и объектом; определение первого расстояния между устройством для захвата изображения и объектом, когда изображение объекта захвачено устройством для захвата изображения; определение второго расстояния между линзой и объектом, когда изображение объекта захвачено устройством для захвата изображения; и определение одного или более оптических параметров указанной линзы на основании первого расстояния, второго расстояния и изображения объекта, захваченного через линзу.

Продукт для определения одного или более оптических параметров линзы очков содержит один или более материальных компьютерочитаемых некратковременных носителей данных, содержащих исполняемые компьютером инструкции, выполненные с возможностью, при их исполнении по меньшей мере одним компьютерным процессором, обеспечивать выполнение указанным по меньшей мере одним компьютерным процессором этапов, включающих в себя: обработку изображения объекта, захваченного устройством для захвата изображения через указанную линзу, когда линза расположена между устройством для захвата изображения и объектом; определение первого расстояния между устройством для захвата изображения и объектом, когда изображение объекта захвачено устройством для захвата изображения; определение второго расстояния между линзой и объектом, когда изображение объекта захвачено устройством для захвата изображения; и определение одного или более оптических параметров указанной линзы на основании первого расстояния, второго расстояния и изображения объекта, захваченного через линзу.

Изобретение относится к способам проведения испытаний оптико-электронных приборов (ОЭП), в частности звездных датчиков, на помехозащищенность от бокового излучения.

Изобретение относится к способам проведения испытаний оптико-электронных приборов (ОЭП), в частности звездных датчиков, на помехозащищенность от бокового излучения.

Изобретение относится к измерительной технике волоконно-оптических систем связи, а именно может быть использовано для локализации событий на рефлектограммах группы оптических волокон одного элементарного кабельного участка волоконно-оптической линии передачи.

Изобретение относится к области измерения и контроля качества оптических волноводов. Способ измерения профиля торца оптического волокна возбуждением аксиальных мод шепчущей галереи и расстояния от точки возбуждения до торца состоит в следующем.

Изобретение относится к области силовой оптики и нанофотоники и касается способа определения оптической прочности поверхности материала. При осуществлении способа поверхность материала в разных точках подвергают однократному облучению импульсом мощного лазерного излучения с различной плотностью энергии F, регистрируя при этом в каждом случае возникновение или не возникновение разрушения поверхности материала, индуцированного лазерным излучением.

Изобретение относится к области калибровки видеокамер, работающих в составе системы технического зрения. Технический результат − получение высококонтрастного изображения тестового шаблона, наблюдаемого камерами видимого и инфракрасного диапазона для осуществления калибровки видеодатчиков многоспектральной системы технического зрения.
Наверх