Генератор паров рабочего тела для термоэмиссионных преобразователей

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей (ТЭП), и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок, термоэмиссионных электрогенерирующих каналов и сборок, ТЭП, установок для исследований и испытаний подобных устройств. Управление генератором паров рабочего тела для термоэмиссионных преобразователей осуществляется изменением напряжения между контактами, соединенными с газопроницаемыми электродами, с помощью электрической цепи, которая помимо генератора паров рабочего тела содержит переменное электросопротивление, переключатель, парный переключатель и источник постоянного напряжения. Техническим результатом является расширение функциональных возможностей генератора пара рабочего тела (использование для подачи паров цезия или бария), снижение его чувствительности к уровню рабочей температуры, повышение эффективности процесса термоэмиссионного преобразования, а также надежности и ресурса ТЭП. 3 з.п. ф-лы, 3 ил.

 

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей, и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок (ЯЭУ), термоэмиссионных электрогенерирующих каналов (ЭГК) и сборок, термоэмиссионных преобразователей (ТЭП), а также установок для исследований и испытаний подобных устройств.

Присутствие паров цезия в межэлектродном зазоре (МЭЗ) ТЭП необходимо для снижения работы выхода электронов и компенсации их пространственного заряда. Для снижения работы выхода эмиттера перспективных высокотемпературных ТЭП в МЭЗ также предполагается использовать пары бария. Поддержание необходимого давления паров этих рабочих тел на уровне от нуля до нескольких Тор осуществляется с помощью генераторов паров рабочего тела (ГПРТ).

Для подачи в ТЭП паров рабочего тела (цезия или бария) используются ГПРТ испарительного типа, в которых рабочее тело испаряется непосредственно с поверхности жидкой фазы, либо подается в зону испарения, сообщающуюся с МЭЗ, с использованием капиллярных сил и пористых фитилей (патент RU №1786536, МПК5 H01J 45/00, опубл. 07.01.1993), подобно тому, как это делается в тепловых трубах. Недостатками данного и ему подобных устройств испарительного типа являются:

- относительно низкий уровень рабочей температуры (~550-650°К) жидкой фазы цезия по сравнению с коллекторными температурами ТЭП (~850-1000°К), определяемый необходимым давлением его насыщенных паров, затрудняет размещение ГПРТ непосредственно на ТЭП и вблизи от него;

- сильная зависимость давления в МЭЗ, а, соответственно, и выходных параметров ТЭП от температуры жидкой фазы цезия в ГПРТ.

Кроме того, при независимой подаче из двух подобных ГПРТ цезия и бария, температура их жидких фаз должна быть одинаковой, что ограничивает возможности оптимизации режима работы ТЭП по давлению паров этих рабочих тел.

Также известны генераторы паров цезия, которые образуются путем разложения соединений графита с цезием (Гвердцители И.Г. Каландаришвили А.Г., Цхакая В.К. Источники паров цезия на основе цезированного графита для ТЭП. Pros. 3rd Internat. Conf. on Thermion. Electr. Power Gener., Juelich, 1972, Vol.3, p. 1139-1146.). Недостатками таких ГПРТ являются:

- опасность проникновения соединений углерода в МЭЗ, что ведет к снижению эффективности термоэмиссионного преобразования энергии и ресурсных характеристик ТЭП;

- небольшая емкость по цезию и необходимость точного регулирования рабочей температуры цезированного графита (в пределах ~ 650-1000°К) по мере уменьшения содержания в нем цезия и для компенсации технологических отклонений параметров.

Наиболее близким к заявляемому техническому решению по ряду признаков (различное давление паров рабочего тела внутри и снаружи устройства, его подпитка из резервуара и отсутствие непосредственного контакта жидкой фазы со средой МЭЗ) является ГПРТ, включающий резервуар, содержащий жидкий цезий или пропитанное им пористое тело, электронагреватель и полый цилиндр из цезированного графита. Внутренняя полость цилиндра сообщается с резервуаром, а его наружная поверхность - с полостью МЭЗ (Патент RU №2464668, МПК H01J 45/00, опубл. 20.10.2012). Благодаря разности давлений внутри и снаружи цилиндра при его нагреве цезий испаряется с наружной поверхности и одновременно поглощается из внутренней полости.

Однако и в этом случае сохраняются необходимость поддержания температуры графита, отличающейся от температуры коллектора ТЭП, а также опасность проникновения соединений углерода в МЭЗ. К тому же, это устройство не пригодно для подачи бария.

Задачей изобретения является расширение функциональных возможностей ГПРТ (использование для подачи паров цезия или бария), снижение его чувствительности к уровню рабочей температуры, повышение эффективности процесса термоэмиссионного преобразования, а также надежности и ресурса ТЭП.

Поставленная задача решается применением в качестве генератора паров рабочего тела для термоэмиссионного преобразователя известного барогальванического элемента, в котором используется твердый электролит, размещенный между двумя газопроницаемыми электродами, сообщающимися с изолированными друг от друга полостями, содержащими пары вещества, ионы которого обеспечивают проводимость данного электролита, причем давления паров в полостях отличаются друг от друга («Energy conversion device comprising a solid crystalline electrolyte and a solid reaction zone separator», патент US №3535163, заявл. 21.11.1966, опубл. 20.10.1070; по российской классификации общепринятое название: «однокомпонентный электрохимический преобразователь с разным давлением активного вещества в электродах» - Л.А. Квасников, Р.Г. Тазетдинов. Регенеративные топливные элементы. Москва, «АТОМИЗДАТ», 1978, стр. 18-21).

При использовании барогальванического элемента в качестве ГПРТ, его рабочим веществом является цезий или барий, присутствующие в жидкой фазе или в виде легко разлагающегося соединения в полости, изолированной от МЭЗ. Давление в этой полости будет равным давлению насыщенного пара этих веществ. В этом случае электродвижущая сила (э.д.с.) барогальванического элемента определяется в соответствии с формулой Нернста:

где:

Тс - температура жидкой фазы или разлагающегося соединения;

PCs - давление насыщенного пара рабочего тела при этой температуре,

РМЭЗ - давление в полости, сообщающейся с МЭЗ;

z - степень ионизации (равна 1 для цезия или 2 для бария);

R=8,3145 Дж/(моль⋅К) - универсальная газовая постоянная;

F=96485 Кл/моль - число Фарадея.

Для упрощения конструкции ТЭП температуру рабочего вещества, как и температуру твердого электролита, целесообразно поддерживать близкой к температуре коллектора ТЭП. На фиг. 1 представлен график зависимости (1) в диапазоне характерных для ТЭП значений давления цезия в МЭЗ, обозначено на фиг. 1, как РМЭЗ, и температуры коллектора, совпадающей с температурой жидкой фазы или разлагающегося соединения, обозначенной на фиг. 1, как Тс. Применение барогальванического элемента по новому назначению, а именно, в качестве в качестве генератора паров рабочего тела для термоэмиссионного преобразователя, обусловлено приведенной зависимостью э.д.с. от давления и температуры, а также возможностью регулирования ионного тока, протекающего через электролит.

Сущность заявленного технического решения поясняется схематическими изображениями барогальванического элемента, применяемого в качестве генератора паров рабочего тела, представленного в разрезе на фиг. 2, а также электрической цепи для управления этим генератором, представленной на фиг. 3.

Сведения, подтверждающие возможность осуществления изобретения.

Генератор пара рабочего тела, приведенный на фиг. 2, содержит колбу 1 из твердого электролита с проводимостью по ионам рабочего тела ТЭП, разделяющую металлический резервуар для рабочего тела 2 и патрубок 3, соединенный с полостью МЭЗ ТЭП. Металлокерамический гермоввод 4 обеспечивает герметичное соединение указанных элементов конструкции и их электрическую изоляцию друг от друга. Для токосъема с внутренней и внешней поверхностей колбы 1 используются газопроницаемые электроды 5 и 6 в виде электропроводных фитилей, а также электрический контакт 7 на резервуаре рабочего тела 2 и электрический контакт 8, находящийся под общим электрическим потенциалом с патрубком 3.

В качестве твердого электролита в предлагаемом ГПРТ могут использоваться колбы из смешанных оксидов алюминия и рабочего тела, изготовленную путем электрохимического замещения натрия атомами цезия или бария в бета-глиноземе, который сформирован по технологии, применяемой для изготовления электролита для серно-натриевых аккумуляторов (Дж. Садуорс, А. Тилли. Сернонатриевые аккумуляторы. Москва, «Мир», 1988). Газопроницаемые электроды могут представлять собой металлические сетки, или фитили из проволоки, стружки и фольги, находящиеся в электрическом контакте с твердым электролитом, причем электрод 6, не имеющий непосредственного контакта со средой МЭЗ, также может быть выполнен из углеволокна.

Управление генератором осуществляется изменением напряжения между контактами с помощью электрической цепи, представленной на фиг. 3, которая помимо ГПРТ содержит переменное электросопротивление R1, переключатель Пр1, парный переключатель Пр2 и источник постоянного напряжения U.

Предлагаемый ГПРТ работает следующим образом. В положении переключателя Пр1, противоположном показанному на фиг. 3, источник постоянного напряжения отключен от ГПРТ. В этом случае, при высокой величине сопротивлении R1 ионный ток в электролите отсутствует, а рабочее тело не поступает в полость МЭЗ. Уменьшение величины этого переменного сопротивления позволяет пропускать ионный ток через колбу из твердого электролита под действием э.д.с, возникающей вследствие разности давления паров рабочего тела в резервуаре и в полости МЭЗ. При этом рабочее тело поглощается электролитом на газопроницаемом электроде 6 и испаряется с газопроницаемого электрода 5 до тех пор, пока давления паров в резервуаре и в МЗЗ не сравняются. Скорость подачи паров рабочего тела регулируется переменным сопротивлением, а максимальная величина этой скорости ограничивается величиной э.д.с. (1) и внутренним электрическим сопротивлением ГПРТ. Дальнейшее увеличение величины ионного тока и скорости подачи рабочего тела достигается созданием дополнительной разности потенциала между электрическими контактами 7 и 8 с помощью внешнего источника постоянного напряжения U путем установки переключателя Пр1 в показанное на фиг. 3 положение. При этом переменным сопротивлением R1 также может осуществляться регулирование подачи рабочего тела. Перевод парного переключателя Пр2 в противоположное положение меняет полярность подключения источника напряжение на обратное. При этом ток через электролит и скорость подачи рабочего тела вновь уменьшаются. Если обратное напряжение превышает величину э.д.с. (1), направление тока в электролите меняется на противоположное и рабочее тело начинает удаляться из полости МЭЗ обратно в резервуар, а давление паров рабочего тела в МЭЗ снижается. Скорость этого процесса также может регулироваться переменным сопротивлением R1. В дальнейшем, так как согласно формуле (1) при уменьшении давления паров рабочего тела в МЭЗ величина э.д.с. увеличивается, суммарное напряжение между газопроницаемыми электродами становится нулевым, ток ионов через электролит прекращается и давление и стабилизируется на уровне, определяемом величиной U. Так как рабочее напряжение ТЭП соизмеримо с расчетными значениями э.д.с, представленными на приведенном графике (см. фиг. 1), этот преобразователь может использоваться и в качестве источника постоянного напряжения U для ГПРТ.

Таким образом, предлагаемое техническое решение позволяет расширить функциональные возможности ГПРТ (использовать в качестве рабочего тела цезий или барий), снизить его чувствительность к уровню рабочей температуры, повысить эффективность процесса термоэмиссионного преобразования энергии, а также надежность и ресурс ТЭП.

1. Генератор паров рабочего тела для термоэмиссионных преобразователей, представляющий собой барогальванический элемент, содержащий резервуар с рабочим телом - цезием, находящимся в жидкой фазе или в виде легко разлагающегося соединения;

при этом генератор паров рабочего тела соединен патрубком с полостью межэлектродного зазора термоэмиссионного преобразователя;

при этом резервуар с рабочим телом и патрубок электрически изолированы друг от друга, разделены твердым электролитом с проводимостью по ионам рабочего тела, а твердый электролит размещен между двумя газопроницаемыми электродами,

отличающийся тем, что управление генератором паров рабочего тела для термоэмиссионных преобразователей осуществляется изменением напряжения между контактами, соединенными с газопроницаемыми электродами, с помощью электрической цепи, которая помимо генератора паров рабочего тела содержит переменное электросопротивление, переключатель, парный переключатель и источник постоянного напряжения.

2. Генератор паров рабочего тела для термоэмиссионных преобразователей по п. 1, отличающийся тем, что рабочим телом является барий.

3. Генератор паров рабочего тела для термоэмиссионных преобразователей по п. 1, отличающийся тем, что твердый электролит выполнен в виде колбы из смеси оксидов алюминия и рабочего тела.

4. Генератор паров рабочего тела для термоэмиссионных преобразователей по п. 1, отличающийся тем, что газопроницаемые электроды представляют собой металлические сетки или фитили из проволоки, стружки и фольги, находящиеся в электрическом контакте с твердым электролитом.



 

Похожие патенты:

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом на номинальный режим.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе систем тепловой защиты и бортовых источников электрической энергии гиперзвуковых летательных аппаратов (ГЛА).

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям, и может быть использовано в составе бортовых источников электрической энергии для летательных аппаратов с прямоточными воздушно-реактивными двигателями.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к использованию термоэмиссионных преобразователей (ТЭП) в составе систем тепловой защиты высокоскоростных летательных аппаратов (ВЛА).

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к термоэмиссионным преобразователям (ТЭП), которые могут использоваться в составе бортовых источников электрической энергии для высокоскоростных летательных аппаратов (ВЛА) с прямоточными воздушно-реактивными двигателями (ПВРД).

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ.

Изобретение относится к космической атомной энергетике, к разработке способов прогнозирования работоспособности термоэмиссионных электрогенерирующих элементов при их создании и наземной отработке.

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК).

Изобретение относится к области электронной техники для изготовления аксиальных цилиндрических изделий различных элементов силовых электрических приборов, в частности катодов термоэмиссионных преобразователей.

Изобретение относится к способу круглогодичной и круглосуточной термоэлектрической генерации, а именно к способу прямого преобразования солнечной радиации в электрическую энергию сочетанием фотоэлектрических и термоэлектрических преобразователей для обеспечения экологически чистым энергопитанием автономных датчиков и приборов.

Изобретение относится к области термоэмиссионного преобразования тепловой энергии в электрическую, а именно к источникам паров рабочего тела для термоэмиссионных преобразователей, и может быть использовано в составе цезиевых систем термоэмиссионных ядерных энергетических установок, термоэмиссионных электрогенерирующих каналов и сборок, ТЭП, установок для исследований и испытаний подобных устройств. Управление генератором паров рабочего тела для термоэмиссионных преобразователей осуществляется изменением напряжения между контактами, соединенными с газопроницаемыми электродами, с помощью электрической цепи, которая помимо генератора паров рабочего тела содержит переменное электросопротивление, переключатель, парный переключатель и источник постоянного напряжения. Техническим результатом является расширение функциональных возможностей генератора пара рабочего тела, снижение его чувствительности к уровню рабочей температуры, повышение эффективности процесса термоэмиссионного преобразования, а также надежности и ресурса ТЭП. 3 з.п. ф-лы, 3 ил.

Наверх