Способ получения нанокапсул пробиотиков

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование пробиотиков и оболочки нанокапсул альгината натрия, а также использование осадителя - хладона-112 при получении нанокапсул физико-химическим методом осаждения нерастворителем.

 

Изобретение относится к нанотехнологиям и ветеринарной медицине, в частности получения нанокапсул пробиотиков.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155 МПК А61K 047/02, А61K 009/16 опубликован 10.10.1997 Российская Федерация предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071 МПК А61K 35/10 Российская Федерация опубликован 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. 2101010 МПК А61K 9/52, А61K 9/50, А61K 9/22, А61K 9/20, А61K 31/19 Российская Федерация опубликован 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140 МПК А61K 009/50, А61K 009/127 Российская Федерация опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 г. Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул пробиотиков, отличающимся тем, что в качестве оболочки нанокапсул используется альгинат натрия при их получении физико-химическим методом осаждения нерастворителем с использованием четыреххлористого углерода в качестве осадителя, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование альгината натрия в качестве оболочки нанокапсул пробиотиков - в качестве их ядра, а также использование четыреххлористого углерода в качестве осадителя.

Результатом предлагаемого метода являются получение нанокапсул пробиотиков в альгинате натрия при 25°С в течение 20 минут. Выход нанокапсул составляет 100%.

ПРИМЕР 1 Получение нанокапсул плантарум, соотношение ядро/полимер 1:3,

1 г плантарум маленькими порциями диспергируют в суспензию альгината натрия в 10 мл гексана, содержащий 1 г альгината натрия в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1000 об/сек. Далее приливают 5 мл хладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул метабактерина, соотношение ядро/полимер 1:1.

1 г метабактерина маленькими порциями диспергируют в суспензию 1 г альгината натрия в 10 мл гексана, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 5 мл хладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул дактоаминоварина с соотношение ядро/полимер 1:1.

1 г лактоаминоварина маленькими порциями диспергируют в суспензию 1 г альгината натрия в 10 мл гексана, в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/сек. Далее приливают 5 мл четыреххлористхладона-112. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г белого порошка. Выход составил 100%.

Способ получения нанокапсул пробиотиков в альгинате натрия, характеризующийся тем, что в качестве оболочки используется альгинат натрия, а в качестве ядра - пробиотики, которые осаждают из суспензии в гексане в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты путем добавления хладона-112 в качестве осадителя, при этом массовое соотношение прибиотик : альгинат натрия составляет 1:1.



 

Похожие патенты:
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта полыни в оболочке из каппа-каррагинана.
Изобретение относится к области нанотехнологии, медицины, косметики и пищевой промышленности. Способ получения нанокапсул сухого экстракта крапивы характеризуется тем, что сухой экстракт крапивы добавляют в суспензию каппа-каррагинана в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают гексафторбензол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта чистотела характеризуется тем, что сухой экстракт чистотела добавляют в суспензию каппа-каррагинана в изопропаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают 6 мл метилэтилкетона, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта муира пуамы характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, в качестве ядра - сухой экстракт муира пуамы, при этом сухой экстракт муира пуамы добавляют в суспензию каппа-каррагинана в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к биотехнологии, конкретно к рекомбинантным слитым белкам, и может быть использовано в медицине. Получен слитый белок, основанный на тяжелой цепи ферритина человека, который содержит на N-конце белка по меньшей мере одну последовательность расщепления матриксной металлопротеиназы (ММР) и неструктурированного полипептида, состоящего по существу из пролина, серина и аланина (PAS), действующего в качестве маскирующего полимера.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта прополиса характеризуется тем, что сухой экстракт прополиса добавляют в суспензию альгината натрия в изопропаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта заманихи характеризуется тем, что сухой экстракт заманихи добавляют в суспензию каппа-каррагинана в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают метилэтилкетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта рейши характеризуется тем, что сухой экстракт рейши добавляют в суспензию каппа-каррагинана в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 800 об/мин, далее приливают ацетон, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Группа изобретений раскрывает микроструктурный аппарат для трансдермального введения лекарственного средства, систему для трансдермального введения по меньшей мере одного лекарственного средства, способ получения микроструктурного аппарата.

Настоящее изобретение относится к фармацевтической промышленности, а именно к способу получения наносуспензии. Способ получения стабильной наносуспензии, содержащей наночастицы по меньшей мере одного природного материала и экстракт по меньшей мере одного природного материала, при этом способ включает стадии обеспечения частиц по меньшей мере одного природного материала, имеющих размер D100 меньше чем 320 мкм, причем природный материал не содержит женьшень, обеспечения экстракта по меньшей мере одного природного материала, диспергирования в растворителе указанных частиц по меньшей мере одного природного материала со стадии и указанного экстракта по меньшей мере одного природного материала со стадии, измельчения дисперсии до получения частиц размером D90 менее 1000 нм и добавления стабилизатора, где по меньшей мере один природный материал выбран из группы, состоящей из растений, цианобактерий, водорослей или грибов.

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование пробиотиков и оболочки нанокапсул альгината натрия, а также использование осадителя - хладона-112 при получении нанокапсул физико-химическим методом осаждения нерастворителем.

Наверх