Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения ниобия, титана и хрома при их соотношении, мас. %: ниобий 58,0, титан 30,0-36,0, хром 6,0-12,0. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют из ниобия и располагают противоположно друг другу, а третий катод изготавливают составным из титана и хрома и располагают между ними. Нижний слой наносят с использованием первого и второго катодов, а верхний слой - с использованием всех трех катодов. В результате сокращается время нанесения покрытия и повышается работоспособность режущего инструмента с многослойным покрытием. 1 табл.

 

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана и ниобия (NbTiN) (см. патент на изобретение RU 2640693 С1). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость и адгезионную прочность. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида ниобия NbN и верхнего слоя нитрида титана, хрома и ниобия TiCrNbN (см. патент на изобретение RU 2548852 С2), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью и величиной сжимающих остаточных напряжений. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

К причинам, препятствующим достижению указанного ниже технического результата также относится недостаточная эффективность использования технологической схемы нанесения покрытия: при осаждении нижнего слоя покрытия используется только один из трех катодов, что снижает скорость нанесения покрытия и увеличивает время технологической операции и, как следствие, материальные издержки (затраты на электроэнергию, оплату труда и т.д.).

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокой твердостью, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с повышенными адгезионными свойствами. Кроме того, повышение уровня сжимающих остаточных напряжений и создание микрослоистости в верхнем слое покрытия приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.

Технический результат - повышение работоспособности РИ и сокращение времени нанесения покрытия.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида ниобия и верхний из нитрида соединения ниобия, титана и хрома при их соотношении, мас. %: ниобий 58,0, титан 30,0-36,0, хром 6,0-12,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют из ниобия и располагают противоположно друг другу, а третий изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и второго катодов, а верхний слой - с использованием всех трех катодов.

Такая структура покрытия позволяет получить высокую прочность сцепления с основой из-за наличия в покрытии нижнего слоя нитрида ниобия, обладающего высокой адгезией с инструментальной основой. При этом верхний слой обладает высокой твердостью из-за дополнительного легирования материала слоя и наличию в их структуре микрослоистости, получаемой при нанесении покрытий с использованием предлагаемой схемы расположения катодов.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Нижний слой покрытия должен обладать высокой адгезией с инструментальным материалом. Слои покрытия должны иметь высокие остаточные сжимающие напряжения и обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также двухслойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный из ниобия, второй - из ниобия и располагают противоположно первому, а третий изготавливают составным из титана и хрома и располагают между ними.

Камеру откачивают до давления 6,65⋅10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают третий катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота включают первый и второй катоды и осаждают нижний слой покрытия NbN толщиной 4,0 мкм. Верхний слой покрытия NbTiCrN толщиной 2,0 мкм наносят с использованием всех трех катодов при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г. Остаточные напряжения определяли на рентгеновском дифрактометре «ДРОН-3М» с использованием фильтрованного CuКα-излучения. Прочность адгезии покрытия с инструментальной основой оценивали методом вдавливания алмазного конического индентора (конус Роквелла) с использованием твердомера ТК-2М при нагрузке 1000 Н. Прочность сцепления определяли по коэффициенту отслоения, равному отношению площади отслоения покрытия вокруг отпечатка от индентора к площади отпечатка.

Стойкостные испытания режущего инструмента проводили при продольном точении заготовок из стали 30ХГСА на токарном станке 16К20. Режимы резания: скорость резания V=160 м/мин, подача S=0,3 мм/об, глубина резания t=1,0 мм, обработка производилась без применения СОЖ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

В таблице 1 приведены результаты испытаний РИ с полученными покрытиями.

Как видно из приведенных в таблице 1 данных, стойкость пластин, с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,30 раза. При этом время осаждения покрытия сократилось в 1,17 раза.

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида ниобия и верхний слой из нитрида соединения ниобия, титана и хрома при их соотношении, мас. %: ниобий 58,0, титан 30,0-36,0, хром 6,0-12,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют из ниобия и располагают противоположно друг другу, а третий катод изготавливают составным из титана и хрома и располагают между ними, причем нижний слой наносят с использованием первого и второго катодов, а верхний слой - с использованием всех трех катодов.



 

Похожие патенты:

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин.

Настоящее изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит корпус из твердого сплава и покрытие, нанесенное осаждением из газовой фазы (PVD).

Изобретение относится к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к текстурированной электротехнической листовой стали и способу ее производства. Указанная сталь содержит листовую сталь, керамическое покрытие, расположенное на листовой стали, и изоляционное придающее натяжение оксидное покрытие, расположенное на керамическом покрытии.

Изобретение относится к устройству для непрерывного вакуумного нанесения покрытий на движущуюся подложку, причем покрытия образованы из металлических сплавов, содержащих основной элемент и по меньшей мере один дополнительный элемент, и к способам нанесения этого покрытия.

Изобретение может быть использовано для нанесения функциональных и защитных металлических покрытий, а именно Cu, Ti, Zn, Nb, Mo, W, Sn, Cr, V, Cd, Zr, и может быть использовано в машиностроительной промышленности.

Изобретение относится к покрытому режущему инструменту для обработки металлов с образованием стружки. Инструмент включает основу, имеющую поверхность, снабженную покрытием, образованным методом химического осаждения из газовой фазы (ХОГФ).

Изобретение относится к устройству для формирования покрытий на поверхностях элемента, ленточного материала или инструмента. В устройстве используется по меньшей мере один проволочный или ленточный материал (2.1 и/или 2.2), который соединен с источником постоянного электрического тока.

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к режущему инструменту с покрытием и способу его получения. режущий инструмент содержит подложку и покрытие.

Изобретение относится к области химико-термической обработки, а именно к вакуумному ионно-плазменному азотированию, и может быть использовано в машиностроении для повышения надежности и долговечности широкого ассортимента деталей машин и инструментов, изготовленных из стали.

Изобретение относится к области энергетического машиностроения и может быть использовано для защиты от эрозионного износа стальных рабочих лопаток влажнопаровых ступеней турбин, подвергающихся высокоскоростному каплеударному воздействию в коррозионно-активных средах при повышенных усталостных нагрузках.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Настоящее изобретение относится к режущему инструменту с покрытием. Режущий инструмент с покрытием содержит корпус из твердого сплава и покрытие, нанесенное осаждением из газовой фазы (PVD).

Изобретение относится к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к области металлургии, а именно к химическому нанесению покрытия осаждением соединения с использованием электрических разрядов и плазменных струй, и может быть использовано в двигателестроении, авиастроении и машиностроении.

Изобретение относится к способу формирования на поверхности изделия из алюминиевого сплава износостойкого слоя и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин из алюминиевых сплавов.

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия.
Наверх