Авиационная силовая установка

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса (1), прикрепленного к торцевой поверхности фюзеляжа (2) центральной и обтекаемыми пластинами (3, 4) соответственно, включающего две кольцевые обечайки (5, 6) контура основного потока воздуха (7) и тракта пограничного слоя фюзеляжа (8). В тракте (8) установлены воздухозаборник (9), вентилятор (10) и сопло (11). В контуре (7) установлены кольцевой воздухозаборник (12), вентилятор (13) и сопло (14). Газогенераторный контур (15) расположен за корневыми частями лопаток вентилятора (13) и включает турбокомпрессор (16), четырехтактные поршневые газогенераторы (17), каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар газогенераторов (17) взаимодействуют с гидравлическими двигателями (18) и радиальными валами (19), газогенераторы (17) и гидравлические двигатели (18) осесимметрично расположены на наружной поверхности контура основного потока воздуха (7). За вентилятором (13) расположены полые лопатки (20), через которые воздух от турбокомпрессора (16) и горячий газ от поршневых газогенераторов (17) поступает туда и обратно к турбине (21) и далее к соплу (22). Центральный вал (23) вентиляторов (10, 13) тракта пограничного слоя фюзеляжа (8) и контура основного потока (7) воздуха соответственно и турбины (20) связан планетарным редуктором (24) и коническим редуктором (25) с радиальными валами (19) гидравлических двигателей (18). Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета.

Известен ТРДД смешанного цикла (Немецкий проектный институт BauhausLuftfahrt, Aviation Week) с поршневыми газогенераторами рядного исполнения с двумя коленчатыми валами, расположенными параллельно оси двигателя, где каждый коленчатый вал взаимодействует с двумя рядами расположенных на периферии оси двигателя под углами друг к другу рядов поршневых цилиндров. Шестерни коленчатых валов передают крутящий момент центральному валу турбокомпрессора и турбины и далее через планетарный редуктор вентилятору. Преимуществом данного двигателя является то, что высокие степени повышения давления и температура в камере поршневого газогенератора обеспечивают высокий КПД термодинамического цикла без использования дорогих технологий производства турбинных лопаток каскада высокого давления. Недостатками данного двигателя является то, что плохо заполняется центральный объем корпуса двигателя и периферийное пространство поршневыми рабочими цилиндрами, что потребует для увеличения пропускной способности объемного поршневого устройства увеличения степени повышения давления турбокомпрессора.

Известен ТРДД с кольцевым воздухозаборником на конце широкой части фюзеляжа, за которым расположен вентилятор с приводом через планетарный редуктор от турбореактивного двигателя (Немецкий проектный институт BauhausLuftfahrt, AviationWeek). Преимуществом данного двигателя является то, что для создания тяги двигателя на входе в вентилятор используется толщина пограничного слоя, полученная при обтекании внешним потоком всего фюзеляжа. В результате снижаются затраты энергии на получение заданной тяги двигателя. Недостатками данного двигателя является то, что длина газогенератора привода вентилятора вместе со своим заборным патрубком значительно увеличивает длину самолета. Другим недостатком является то, что на самолете используются и другие обычные двигатели. Это снижает эффективность крыльев, на которых они установлены.

Известен ТРД (Сравнительный анализ параметров и характеристик различных схем силовой установки с дополнительным выносным вентилятором, НАУКА и ОБРАЗОВАНИЕ, Инженерное образование #12, декабрь 2012, авторов Эзрохи Ю.А. и др) с двумя двухконтурными двигателями на пилонах с отбором части мощности на установленные внутри и конце фюзеляжа специальные устройства, заканчивающими двумя винтовентиляторами противоположного вращения. Преимуществом данного двигателя является то, что для создания тяги двигателя на входе в вентилятор используется толщина пограничного слоя, полученная при обтекании внешним потоком всего фюзеляжа. Недостатком является большая длина перехода к малому диаметру вентилятора и усложнение конструкции из-за того, что для получения тяги на самолете в пилонах используются дополнительные вентиляторы и редукторы.

За прототип силовой установки принято устройство, описанное в патенте RU №2578760 С2, МПК F02B 71/04, опуб. 27.03.2016. Силовая установка состоит из кольцевых рядов двухтактных поршневых газогенераторов продольного расположения, турбокомпрессора и турбины с выходным соплом. Шестерни радиальных валов передают крутящий момент от пластинчатых гидравлических двигателей центральному валу двигателей и далее через редуктор центральному валу фюзеляжа и на его конце двум винтам разного вращения. Преимуществом данного двигателя является то, что высокие степени повышения давления и температура в камере сгорания поршневого газогенератора обеспечивают высокий КПД термодинамического цикла без использования дорогих технологий производства турбинных лопаток каскада высокого давления. Упрощается конструкция движителя за счет объединения всех винтов с редукторами и повышается его КПД. Недостатками данного двигателя является то, что заполняемый центральный объем корпуса подвесных двигателей увеличивает поперечные габариты двигателя. Наличие вторых поршней в каждом газогенераторе увеличивает его объемные габариты, не позволяя повысить число циклов в минуту рабочих цилиндров. Так как эпюра входных скоростей перед винтами состоит из участка с резким изменением скоростей в пограничном слое и одинаковых скоростей во внешнем потоке, то могут возникнуть сложности при проектировании и изготовлении винтов. Сохраняется большая длина плавного уменьшения диаметров конца фюзеляжа перед винтами.

Технической проблемой, на решение которой направлено предлагаемое изобретение является создание авиационной силовой установки повышенной эффективности и снижение массы - ее и самолета.

Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки.

Технический результат достигается тем, что в авиационной силовой установке, содержащей осесимметричный корпус с установленными в нем газогенераторным контуром, включающим в себя воздухозаборник, турбокомпрессор, соединенный центральным валом с турбиной на выхлопных газах расположенных осесимметрично гидравлических поршневых газогенераторов, каждый снабжен двумя оппозитными рабочими поршнями, гидравлические двигатели поршневых газогенераторов - один на несколько пар гидравлических поршневых газогенераторов, расположенных вдоль осевой линии силовой установки и механически связанных радиальными валами гидравлических двигателей и коническими шестернями с центральным валом, сопло за турбиной новым является то, что корпус авиационной силовой установки, включает в себя две кольцевые обечайки - контура основного потока воздуха и тракта пограничного слоя фюзеляжа, в контуре основного потока воздуха и тракта пограничного слоя фюзеляжа установлены закрепленные на центральном валу вентиляторы основного потока воздуха и пограничного слоя фюзеляжа соответственно, газогенераторный контур расположен за корневыми частями лопаток вентилятора контура основного потока воздуха, четырехтактные поршневые газогенераторы и гидравлические двигатели расположены в конце силовой установки между стенками контура основного потока воздуха и тракта пограничного слоя фюзеляжа, а радиальные валы гидравлических двигателей связаны с центральным валом вентиляторов, турбокомпрессора и турбины при помощи планетарного и конического редукторов.

Кольцевые обечайки - контура основного, потока воздуха и тракта пограничного слоя фюзеляжа, имеют центральную и обтекаемые пластины для крепления к торцевой поверхности фюзеляжа.

Валы вентиляторов соединены при помощи планетарного мультипликатора.

Предлагаемая авиационная силовая установка приведена на чертеже. Авиационная силовая установка состоит из осесимметричного корпуса 1, прикрепленного к торцевой поверхности фюзеляжа 2 центральной и обтекаемыми пластинами 3, 4 соответственно, включающим в себя две кольцевые обечайки 5, 6 контура основного потока воздуха 7 и тракта пограничного слоя фюзеляжа 8. В тракте пограничного слоя фюзеляжа 2 установлены кольцевой воздухозаборник 9, вентилятор 10 и сопло 11. В контуре основного потока воздуха установлены друг за другом кольцевой воздухозаборник 12, вентилятор основного потока воздуха 13 и сопло 14. Газогенераторный контур 15 расположен за корневыми частями лопаток вентилятора контура основного потока воздуха 13 и включает в себя турбокомпрессор 16, четырехтактные поршневые газогенераторы 17, каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар четырехтактных поршневых газогенераторов 17 взаимодействуют с гидравлическими двигателями 18 и радиальными валами 19, четырехтактные поршневые газогенераторы 17 и гидравлические двигатели 18 осесимметрично расположены на наружной поверхности контура основного потока воздуха 7. За вентилятором основного потока воздуха 13 расположены полые лопатки 20, через которые воздух от турбокомпрессора 16 и горячий газ от поршневых газогенераторов 17 поступает туда и обратно к турбине 21 и далее к соплу 22. Центральный вал 23 вентиляторов 10, 13 тракта пограничного слоя фюзеляжа 8 и контура основного потока 7 воздуха соответственно и турбины 20 связан планетарным редуктором 24 и коническим редуктором 25 с радиальными валами 19 гидравлических двигателей 18. Жесткая связь обоих контуров 7 и 8 обеспечивается переходником 26, развитая сеть каналов которого способна защитить основной вентилятор от попадания птиц и предметов на взлетной полосе.

Авиационная силовая установка работает следующим образом. Пограничный слой фюзеляжа 2 входит воздухозаборник 9, где вначале расширяется, а затем проходит два поворота разного радиуса перед поступлением в вентилятор 10. В результате эпюра скоростей несколько выравнивается, при этом нижние слои воздуха около втулки вентилятора 10 разгоняются, а верхние тормозятся. В соответствии с этим выбирается закон закрутки лопаток вентилятора 10. После спрямляющего аппарата вентилятора 10 поток следует в тракте контура пограничного слоя фюзеляжа и выбрасывается в сопло 11. Основной поток наружного воздуха входит в воздухозаборник 12, расширяется в диффузоре и после двух поворотов поступает в вентилятор 13. После спрямляющего аппарата вентилятора 13 поток следует в тракте основного вентиляторного контура 7 и выходит через сопло 14, создавая в сумме с соплом 11 основную тягу двигателя. Скорости потоков воздуха в данных трактах выбираются из условия приемлемых скоростей в переходнике 26, не достигающих скоростей звука. Небольшая нижняя часть основного воздушного потока после вентилятора 13 поступает в газогенераторный контур 15, где последовательно проходит турбокомпрессор 16, поршневые камеры поршневых газогенераторов 17 и в виде подогретого газа подается на турбину 21 и выхлопное сопло 22, образуя тягу газогенераторого контура двигателя. Крутящий момент радиальных валов 19 гидравлических двигателей 18, гидравлически соединенных с известными поршневыми газогенераторами 17, передается при помощи конического 25 и планетарного 24 редукторов центральному валу 23 вентиляторов 10, 13, турбокомпрессора 16 компрессора и турбины 21.

Таким образом, трехконтурная компановка двигателя позволяет сократить длину и уменьшить аэродинамическое сопротивление фюзеляжа с двигателями на пилонах. Струи воздуха и газа с торца фюзеляжа убирают зоны пониженного донного давления, а гидравлическое сопротивление всего фюзеляжа эффективно используется в сопле тракта пограничного слоя фюзеляжа для увеличения КПД двигателя. Увеличение термодинамического КПД силовой установки за счет применения поршневых газогенераторов с высокой температурой сжигания топлива при упрощении конструкции газотурбинной части двигателя достигается за счет снижении доли повышения давления турбокомпрессора низкого давления в общей высокой степени повышения давления силовой установки. При этом сниженные обороты турбокомпрессора низкого давления, как и четырехтактные поршневые газогенераторы, повысят ресурс силовой установки, а давление за турбиной двигателя достаточно для оптимальной тяги сопла в режиме крейсерского полета. Вентиляторы, установленные в отдельных каналах, могут быть спроектированы в соответствии со своими эпюрами входящих потоков воздуха, а скорости на периферийных сечениях лопаток вентилятора могут быть выбраны меньше установленных для воздухозаборников ТРДД, что снимет ограничения по снижению КПД вентилятора при больших скоростях полета самолета. Вентилятор, установленный в тракте пограничного слоя фюзеляжа повысит КПД всей силовой установки за счет снижения средней скорости на входе в его воздухозаборник, при этом профиль подводного канала может несколько спрямить эпюру скоростей пограничного слоя всего фюзеляжа непосредственно перед рабочими лопатками вентилятора.

Предложенная конструкция силовой установки позволяет уменьшить массу и гидравлическое сопротивление, убрав все отдельно расположенные двигатели самолета с их узлами крепления, как на крыльях, так и на конце фюзеляжа самолета. Авиационная силовая установка представляет собой трехконтурный авиационный двигатель с отдельным вентилятором на пограничном слое фюзеляжа самолета с высокой скоростью полета. Высокие параметры термодинамического цикла достигаются без использования специальных технологий изготовления турбинных лопаток. Устройство позволит не уменьшать кормовые сечения фюзеляжа из-за эффекта донного давления, а также может работать при попадании птиц с силовую установку.

1. Авиационная силовая установка, содержащая осесимметричный корпус с установленными в нем газогенераторным контуром, включающим воздухозаборник, турбокомпрессор, соединенный центральным валом с турбиной на выхлопных газах, расположенных осесимметрично гидравлических поршневых газогенераторов, каждый снабжен двумя оппозитными рабочими поршнями, гидравлические двигатели поршневых газогенераторов - один на несколько пар гидравлических поршневых газогенераторов, расположенных вдоль осевой линии силовой установки и механически связанных радиальными валами гидравлических двигателей и коническими шестернями с центральным валом, сопло за турбиной, отличающаяся тем, что корпус авиационной силовой установки включает в себя две кольцевые обечайки контура основного потока воздуха и тракта пограничного слоя фюзеляжа, в контуре основного потока воздуха и тракта пограничного слоя фюзеляжа установлены закрепленные на центральном валу вентиляторы основного потока воздуха и пограничного слоя фюзеляжа соответственно, газогенераторный контур расположен за корневыми частями лопаток вентилятора контура основного потока воздуха, четырехтактные поршневые газогенераторы и гидравлические двигатели расположены в конце силовой установки между стенками контура основного потока воздуха и тракта пограничного слоя фюзеляжа, а радиальные валы гидравлических двигателей связаны с центральным валом вентиляторов, турбокомпрессора и турбины при помощи планетарного и конического редукторов.

2. Авиационная силовая установка по п. 1, отличающаяся тем, что кольцевые обечайки контура основного потока воздуха и тракта пограничного слоя фюзеляжа имеют центральные и обтекаемые пластины для крепления к торцевой поверхности фюзеляжа.

3. Авиационная силовая установка по п. 1, отличающаяся тем, что валы вентиляторов соединены при помощи планетарного мультипликатора.



 

Похожие патенты:

Система охлаждения затурбинных элементов трехконтурного турбореактивного двигателя содержит компрессор низкого давления, канал второго контура, вход в который сообщен с выходом из компрессора низкого давления, а выход - с затурбинной полостью.

Изобретение относится к области авиационной техники и может быть использовано в трехконтурных двигателях, входящих в состав силовой установки многорежимных летальных аппаратов.

Изобретение относится к авиационной технике, а именно к турбореактивному двигателю самолета с системой охлаждения турбин высокого давления. Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение эффективности охлаждения турбин высокого давления, что способствует повышению мощности турбореактивного двигателя.

Изобретение относится к газотурбинным двигателям, предназначенным для длительной работы на дозвуковом малозаметном летательном аппарате. Бесфорсажный турбореактивный двигатель включает газогенератор, вентилятор, соединенный с турбиной низкого давления, канал внутреннего контура, соединенный с последней ступенью вентилятора и с компрессором высокого давления, канал наружного контура, соединенный с последней ступенью вентилятора и со смесителем.

Авиационная силовая установка содержит турбокомпрессорный блок, батарею твердооксидных топливных элементов с выходами для анодного и катодного газов, отдельно расположенный тяговый вентилятор, топливный насос.

Авиационная силовая установка содержит турбореактивный двухконтурный двигатель с внешним и внутренним контурами и по меньшей мере один выносной вентиляторный модуль.

Способ работы трехконтурного турбореактивного двигателя с форсажной камерой заключается в том, что сжатый воздух из адаптивного вентилятора разделяют на три потока.

Трехъярусная рабочая лопатка турбовентилятора содержит последовательно расположенные от корпуса турбовентилятора к диску ротора рабочую лопатку вентилятора и рабочую лопатку турбины, соединенные между собой посредством промежуточного элемента с образованием трех проточных газовых каналов.

Изобретение относится к энергетике. Предлагается камера смешения форсажной камеры, которая включает внешний кольцевой корпус, кок-стекатель и оболочку, на которой расположены радиально направленные пилоны-воздуховоды, закрепленные с противоположной стороны на общем разделителе, который делит внутренний контур на центральную и вешнюю части, а также обеспечивает подачу воздуха наружного контура, через полости пилонов, непосредственно в центральную часть внутреннего контура, тем самым обеспечивая равномерное распределение кислорода по радиусу камеры смешения, однородное температурное поле на выходе из камеры смешения и эффективное охлаждение узлов форсунок и стабилизаторов форсажной камеры.

Изобретение относится к авиационным турбореактивным двигателям, включая двигатели для сверхзвуковых многорежимных самолетов. В турбореактивном двигателе с внешней стороны от канала наружного контура выполнен канал третьего контура, образованный на входе в двигатель промежуточными полками входного направляющего аппарата вентилятора и внешним корпусом двигателя и далее ниже по потоку - разделительными полками рабочих и спрямляющих лопаток вентилятора совместно с внешним корпусом двигателя.

Газотурбинный двигатель со свободнопоршневым генератором газа (СПГГ) состоит из связанных между собой СПГГ, газосборника и газовой турбины. СПГГ содержит рабочий цилиндр двигателя, рабочие поршни двигателя, поршни компрессора, синхронизирующий механизм движения рабочих поршней двигателя и поршней компрессора, продувочные щели, выхлопные щели, форсунку, всасывающий и нагнетательный клапаны, компрессорные цилиндры, буферные полости, ресивер компрессора.

Изобретение относиться к энергетическому оборудованию, в частности производству электрической энергии из энергии пара или сжатого газа. В устройстве нет разделения на генерирующую и двигательную часть, благодаря чему для его построения необходим минимум частей, а также возможно обеспечение полной герметизации с созданием внутри корпуса значительного давления.

Изобретение относится к области авиационного двигателестроения, а конкретно к авиационным силовым установкам широкофюзеляжных самолетов с высокой скоростью полета. Установка состоит из осесимметричного корпуса, прикрепленного к торцевой поверхности фюзеляжа центральной и обтекаемыми пластинами соответственно, включающего две кольцевые обечайки контура основного потока воздуха и тракта пограничного слоя фюзеляжа. В тракте установлены воздухозаборник, вентилятор и сопло. В контуре установлены кольцевой воздухозаборник, вентилятор и сопло. Газогенераторный контур расположен за корневыми частями лопаток вентилятора и включает турбокомпрессор, четырехтактные поршневые газогенераторы, каждый снабжен двумя оппозитными рабочими поршнями. Каждые несколько пар газогенераторов взаимодействуют с гидравлическими двигателями и радиальными валами, газогенераторы и гидравлические двигатели осесимметрично расположены на наружной поверхности контура основного потока воздуха. За вентилятором расположены полые лопатки, через которые воздух от турбокомпрессора и горячий газ от поршневых газогенераторов поступает туда и обратно к турбине и далее к соплу. Центральный вал вентиляторов тракта пограничного слоя фюзеляжа и контура основного потока воздуха соответственно и турбины связан планетарным редуктором и коническим редуктором с радиальными валами гидравлических двигателей. Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в увеличении дальности, скорости полета самолета и увеличении полезной нагрузки. 2 з.п. ф-лы, 1 ил.

Наверх