Способ управления ветроэнергетической установкой

Изобретение касается способа управления по меньшей мере одной ветроэнергетической установкой для выработки электрической энергии из ветра для подачи в электрическую питающую сеть (2). Способ управления по меньшей мере одной ветроэнергетической установкой (7) для выработки электрической энергии из ветра для подачи в электрическую питающую сеть (2), при котором ветроэнергетическая установка (7) имеет аэродинамический ротор (18) с роторными лопастями и связанный с аэродинамическим ротором (18) генератор для выработки мощности. Ветроэнергетическая установка (7) эксплуатируется в нормальном режиме, в котором имеющуюся в распоряжении мощность ветра она подает до номинальной мощности в электрическую питающую сеть (2), причем эта имеющаяся в распоряжении мощность ветра представляет собой мощность, которая может генерироваться из ветра и подаваться в электрическую питающую сеть (2) ветроэнергетической установкой (7). Ветроэнергетическая установка (7) переходит из своего нормального режима в поддерживающий режим, если в ту же самую электрическую питающую сеть (2), в которую подает энергию ветроэнергетическая установка (7), подается в значительном количестве энергия от солнечной энергетической установки. Изобретение направлено на предоставление мгновенного резерва в сеть в любой момент времени. 4 н. и 14 з.п. ф-лы, 4 ил.

 

Данное изобретение касается способа управления по меньшей мере одной ветроэнергетической установкой. Изобретение касается также соответствующей ветроэнергетической установки, и оно касается ветряного парка с несколькими такими ветроэнергетическими установками. Данное изобретение касается также ветроэнергетической системы с по меньшей мере одним ветряным парком и по меньшей мере одной солнечной энергетической установкой.

Ветроэнергетические установки известны и по определению предназначены для отбора энергии из ветра и подачи ее в виде электрического тока в электрическую питающую сеть. Дополнительно к этой основной задаче ветроэнергетические установки все чаще принимают на себя задачи по поддержанию электрической питающей сети.

Возрастающее значение такого поддержания сети связано отчасти и с тем, что растет доля децентрализованных поставщиков энергии, к которым помимо ветроэнергетических установок относятся также, в частности, фотоэлектрические солнечные энергетические установки. Таким образом, желательно, чтобы децентрализованные поставщики энергии тоже могли вносить вклад в поддержание сети, по меньшей мере желательно, чтобы некоторые из этих децентрализованных поставщиков могли вносить такой вклад.

В качестве одной проблемы поддержания электрической питающей сети с помощью ветроэнергетических установок обычно указывают, что их готовность подавать дополнительную мощность для поддержания сети зависит от актуальной метеорологической обстановки. Другими словами, проблема может заключаться в том, что ветроэнергетические установки при слабом ветре или при безветрии могут подавать мало добавочной мощности или совсем не подавать ее.

Фактически подобная проблема актуальна и для фотоэлектрических солнечных энергетических установок, которые естественно, могут вырабатывать ток только в дневное время, в частности, при свете солнца.

Ветроэнергетические установки в принципе имеют потенциал накопления кинетической энергии, в частности, в своих роторах, чтобы, таким образом, например, иметь возможность обеспечить мгновенный резерв. Но и такое предоставление положительного мгновенного резерва из упомянутой кинетической энергии будет возможно лишь тогда, когда ротор соответствующей ветроэнергетической установки вращается. В том случае, если ротор ветроэнергетической установки вращается, можно предоставить мгновенный резерв, т.е. кратковременно повысить подаваемую мощность. Такая подача мгновенного резерва для фотоэлектрических солнечных энергетических установок, однако, не известна. Она в любом случае могла бы быть реализована посредством предварительного регулирования параметра на понижение или предоставлением аккумулятора энергии.

Немецкое патентное ведомство при проведенном поиске выявило следующие публикации, раскрывающие ближайший уровень техники: DE 10 2011 081 795 A1, DE 10 2013 101 099 A1, DE 10 2013 203 540 A1, DE 10 2014 101 809 A1, US 2011/0057445 A1, US 2016/0065115 A1, WO 2014/118059 A1, DE 10 2009 037 239 A1 и DE 297 15 248 U1.

Таким образом, в основу данного изобретения положена задача, решить по меньшей мере одну из вышеупомянутых проблем. В частности, в основу изобретения положена задача улучшения интегрирования в сеть возобновляемых источников энергии. Желательно, чтобы предоставление мгновенного резерва в сеть могло быть реализовано в любой момент времени. В частности, при выработке тока максимально высокая доля должна обеспечиваться возобновляемыми источниками энергии, или это по меньшей мере должно быть возможно. В частности, при дополнительном подключении возобновляемых источников энергии вследствие недостаточной поддержки сети предотвращается режим работы сети на верхнем пределе. По меньшей мере будет предложено решение, альтернативное существующим решениям.

Согласно изобретению, предлагается способ, охарактеризованный в независимом пункте 1 формулы изобретения. Этот способ касается, тем самым, управления по меньшей мере одной ветроэнергетической установкой для выработки электрической энергии из ветра для подачи в электрическую питающую сеть. Этот способ управления одной ветроэнергетической установкой, по сути, можно перенести и на управление несколькими ветроэнергетическими установками. В частности, каждая ветроэнергетическая установка предпочтительно автоматически управляет положением своей рабочей точки, но может получать также для координации задающие сигналы, которые, в частности, могут координироваться и предоставляться блоком управления более высокого уровня, например, управляющей системой парка, служащей для управления ветряным парком.

Такая ветроэнергетическая установка имеет аэродинамический ротор с роторными лопастями, регулируемыми по своим углам установки лопасти. В принципе может быть достаточно и одной отдельной роторной лопасти, что, однако, сегодня оказалось в принципе непригодным. Кроме того, ротор может эксплуатироваться с изменяемой частотой вращения ротора. В частности, в области частичных нагрузок, когда скорость ветра еще не достигла номинальной скорости ветра, эта частота вращения ротора может зависеть от выбранной рабочей точки. В принципе частота вращения ротора может, однако, изменяться и задаваться в пределах целесообразных границ.

С аэродинамическим ротором связан генератор, который вырабатывает мощность.

Предлагается эксплуатировать ветроэнергетическую установку в нормальном режиме, при котором она имеющуюся мощность ветра подает в электрическую питающую сеть до номинальной мощности. До тех пор, пока ветер настолько слаб, что он не может поставлять номинальную мощность, в этом нормальном режиме добывается имеющаяся в распоряжении мощность ветра и, таким образом, столько мощности, сколько можно получить из ветра, и подается в электрическую питающую сеть. Когда скорость ветра достигает номинального значения и превышает его, то для защиты компонентов ветроэнергетической установки необходимо эту мощность ограничивать номинальной мощностью. Как правило к этому нормальному режиму привязана также рабочая точка, которая зависит от скорости ветра.

Кроме того, предлагается, чтобы указанная ветроэнергетическая установка в зависимости от рабочей ситуации по меньшей мере одной солнечной энергетической установки, питающей ту же самую сеть, переводилась из нормального режима в поддерживающий режим. Таким образом, эта ветроэнергетическая установка может эксплуатироваться также в поддерживающем режиме, который отличается от нормального режима. Здесь предлагается, чтобы такой поддерживающий режим осуществлялся в зависимости от солнечной энергетической установки, питающей ту же самую сеть. Это предлагается, в частности, для фотоэлектрических солнечных энергетических установок, у которых подаваемая в сеть мощность практически без запаздывания колеблется с энергией, получаемой от солнца, и которые обычно практически не имеют аккумулятора энергии. Таким образом, в частности, у фотоэлектрических солнечных энергетических установок возникает та проблема, что они не пригодны для предоставления мгновенного резерва. И тем не менее, таким образом могут поддерживаться также и другие солнечные энергетические установки.

В частности, здесь предусмотрено, что ветроэнергетическая установка в поддерживающем режиме подает или может подавать больший мгновенный резерв, или по меньшей мере предлагает больший мгновенный резерв, чем в своем нормальном режиме. Но возможно также, что в этом поддерживающем режиме указанная ветроэнергетическая установка иным образом поставляет бόльшую долю в поддержание электрической питающей сети, чем в нормальном режиме.

В частности, предусмотрено, что такой поддерживающий режим выбирается в том случае, если указанная по меньшей мере одна фотоэлектрическая солнечная энергетическая установка, подающая энергию в ту же самую электрическую питающую сеть, которую упрощенно можно называть сетью, подает в эту сеть сравнительно много электрической мощности, в частности, когда она подает в нее свою номинальную мощность. Другими словами, здесь поддерживающий режим для указанной по меньшей мере одной ветроэнергетической установки предлагается тогда, когда есть сильное солнечное излучение.

Согласно изобретению, было установлено, что как правило возникает корреляция между интенсивным солнечным излучением и, тем самым, большим количеством получаемой солнечной энергии, с одной стороны, и слабым ветром и, таким образом, небольшим количеством получаемой солнечной энергией, с другой стороны. Для этого предлагается указанную по меньшей мере одну ветроэнергетическую установку в таком случае предусмотреть для того, чтобы она вносила сравнительно большой вклад в поддержание указанной электрической питающей сети. В частности, в такой ситуации предоставление или по меньшей мере предложение мгновенного резерва может взять на себя ветроэнергетическая установка, практически за указанную по меньшей мере одну питающую фотоэлектрическую солнечную энергетическую установку.

Вследствие этого может быть достигнута такая ситуация, что при сильном солнечном излучении может подаваться много фотоэлектрической мощности, тогда как одновременно может предоставляться значительная степень поддерживающего потенциала, в частности, мгновенный резерв, который сами эти фотоэлектрические солнечные энергетические установки не смогли бы предоставить. Таким образом, фотоэлектрические солнечные энергетические установки и ветроэнергетические установки могут благоприятным образом дополнять друг друга, поскольку при сильном солнечном излучении эти фотоэлектрические солнечные энергетические установки подают энергию и поддерживают ветроэнергетические установки.

В принципе указанная по меньшей мере одна ветроэнергетическая установка, однако, может входить в поддерживающий режим и тогда, когда и сама она может подавать в сеть какую-то или даже большую мощность ветра. В частности, хотя и было установлено, что существует корреляция между сильным солнечным излучением и слабым ветром, предлагаемое решение может, однако, найти применение и в тех редких случаях, когда одновременно имеются сильное солнечное излучение и сильный ветер.

Предпочтительно предлагается, тем самым, чтобы ветроэнергетическая установка в поддерживающем режиме могла предоставить больший мгновенный резерв, чем в нормальном режиме.

Согласно одному варианту выполнения предлагается, что в зависимости от изменения df/dt частоты f сети, определяемой в электрической питающей сети, в электрическую питающую сеть подается мгновенный резерв мощности PM, причем между нормальным режимом и поддерживающим режимом предусмотрены различные зависимости мгновенного резерва мощности PM от этого изменения таким образом, что при одинаковом изменении df/dt частоты величина мгновенного резерва мощности PM в поддерживающем режиме больше, чем в нормальном режиме. Мгновенный резерв, который в зависимости от изменения частоты подается в электрическую питающую сеть, служит, в частности, для того, чтобы противодействовать изменениям частоты. Такое противодействие должно осуществляться максимально быстро или, соответственно, мгновенно. Поэтому и используется термин «мгновенный резерв мощности» или упрощенно «мгновенный резерв», и в дальнейшем термин «мгновенный резерв» используется как синоним мгновенного резерва мощности.

Подача такого мгновенного резерва пригодна для поддержки электрической питающей сети и поэтому желательна. Однако, следует учитывать, что подача такого мгновенного резерва тоже может представлять собой нагрузку для питающей ветроэнергетической установки. В частности, быстрое повышение подаваемой мощности, в частности, когда это повышение достигает проектных пределов, может вследствие этого нагружать конструктивные элементы. Кроме того, этим могут быть обусловлены также потери мощности, поскольку рабочая точка ветроэнергетической установки при этом по меньшей мере кратковременно уходит от своего оптимума. В частности, использование кинетической энергии вращающегося ротора ветроэнергетической установки обусловливает торможение этого ротора, что, с одной стороны, может привести к тому, что будет оставлена и аэродинамически оптимальная рабочая точка, но что, с другой стороны, может также привести к механической нагрузке на установку.

Поэтому подача мгновенного резерва не является безусловно желательной для эксплуатанта ветроэнергетической установки.

Поэтому предлагается, чтобы в нормальном режиме подавался или предлагался меньший мгновенный резерв, чем в поддерживающем режиме. Подача мгновенного резерва как правило зависит от определения изменения частоты напряжения электрической питающей сети, а именно - от изменения df/dt частоты. Также предлагается, чтобы в нормальном режиме реакция на изменение частоты была слабее, чем в поддерживающем режиме. Соответственно, при одинаковом изменении частоты в нормальном режиме предоставляется, т.е. подается меньший мгновенный резерв, чем в поддерживающем режиме.

Предпочтительно мгновенный резерв мощности PM может вычисляться по следующей формуле:

PM=k·df/dt

При этом k - коэффициент зависимости, который по величине в поддерживающем режиме больше, чем в нормальном режиме. Этот коэффициент k зависимости, тем самым, определяет взаимосвязь между подаваемым мгновенным резервом мощности PM и изменением df/dt частоты, и при этом для нормального режима и для поддерживающего режима может устанавливаться различной величины. Его величина для поддерживающего режима устанавливается большей. Так как при снижении частоты, т.е. при отрицательной df/dt для поддержания должен подаваться мгновенный резерв, то этот коэффициент k зависимости обычно будет иметь отрицательное значение. При этом вместо коэффициента k зависимости может также использоваться, например, функция, или могут оказывать влияние другие критерии, например, необходимо учитывать предельные значения или исходные значения. Также могут учитываться краевые условия, например, что должно превышаться по величине только одно предельное значение абсолютного отклонения частоты. Предпочтительно этот коэффициент k зависимости в случае поддерживающего режима по меньшей мере вдвое больше, чем в случае нормального режима. Согласно одному варианту выполнения принимается, что коэффициент k зависимости в нормальном режиме равен 0, так что в нормальном режиме мгновенный резерв не подается.

Таким образом, возможно также, что нормальный режим и поддерживающий режим различаются, в частности, по величине мгновенного резерва. При этом возможно также, что по конкретной рабочей точке нет разницы между нормальным режимом и поддерживающим режимом. Таким образом, ветроэнергетическая установка в принципе в обоих режимах эксплуатируется в своей оптимальной рабочей точке до тех пор, пока не произойдет запрашивание мгновенного резерва, т.е. до тех пор, пока изменение df/dt частоты, например, не станет достаточно маленьким, или когда абсолютные отклонения частоты от нормальной частоты сети, т.е. в частности, от номинальной частоты появятся только в небольшой, в частности, в пренебрежимо малой области.

Согласно одному варианту выполнения для поддержания электрической питающей сети предлагается добавочная мощность, в частности, мгновенный резерв мощности, который может запрашиваться для подачи в электрическую питающую сеть, или который может подаваться в зависимости от устойчивости сети, причем эта по меньшей мере одна ветроэнергетическая установка в поддерживающем режиме предлагает бόльшую добавочную мощность, чем в нормальном режиме. Здесь тоже учитывается, что хотя подача мгновенного резерва для поддержания электрической питающей сети предпочтительна для сети, однако не является безусловно предпочтительной для эксплуатанта ветроэнергетической установки. Поэтому предлагается не подавать мгновенный резерв в нормальном режиме или подавать с меньшей амплитудой, чем в поддерживающем режиме.

И в этом случае, как и при описанной выше различной зависимости от изменения частоты, в основу положена идея, что предложение или подача большего мгновенного резерва предпочтительны, в частности, тогда, когда питающие одну и ту же сеть фотоэлектрические солнечные энергетические установки подают в сеть большую мощность. Здесь тоже может быть предусмотрено, что указанная по меньшей мере одна ветроэнергетическая установка как в нормальном режиме, так и в поддерживающем режиме эксплуатируется в одной и той же рабочей точке до тех пор, пока не запрашивается никакого мгновенного резерва и никакой иной добавочной мощности. Однако, возможно также (как это будет еще пояснено ниже), что ветроэнергетическая установка целенаправленно эксплуатируется в другой рабочей точке.

Предпочтительно предусмотрено, что согласно одному варианту выполнения указанная ветроэнергетическая установка в поддерживающем режиме по меньшей мере частично подает в электрическую питающую сеть меньшую мощность, чем в нормальном режиме, или что она отбирает мощность из этой электрической питающей сети, чтобы благодаря этому предоставить повышенный мгновенный резерв.

Благодаря такой мере может повышаться, в частности, возможная добавочная мощность, в частности, возможный мгновенный резерв. Для этого рабочая точка ветроэнергетической установки уходит от своего оптимума, поскольку здесь на переднем плане стоит предоставление или по меньшей мере предложение мгновенного резерва. В частности, за счет этого может достигаться предоставление или по меньшей мере предложение такого большого мгновенного резерва или иной добавочной мощности, что этого будет достаточно для по меньшей мере одной фотоэлектрической солнечной энергетической установки, питающей ту же самую сеть. Вследствие работы вне оптимальной рабочей точки как правило в сеть подается меньшая мощность. Однако, возможно также, что находится другая рабочая точка, в которой в сеть не подается меньше мощности, или подается ненамного меньшая мощность, однако, замена на эту новую рабочую точку означает время от времени снижение подачи мощности. Это относится, в частности, к новой рабочей точке, которая имеет бόльшую частоту вращения, причем ускорение до этой большей частоты вращения для ротора означает потерю мощности на время этого разгона. При необходимости при этой высокой скорости вращения все же может подаваться аналогичная мощность, как и в оптимальной рабочей точке, однако, это возможно сопряжено с большими нагрузками на установку или с другими недостатками.

Согласно одному варианту выполнения предлагается, чтобы поддерживающий режим включал в себя режим вращения вхолостую (, при котором ротор ветроэнергетической установки приводится ветром во вращение, но не вырабатывает при этом мощности. Такое вращение ветроэнергетической установки вхолостую может, в частности, быть предусмотрено тогда, когда ветер слабый. Эта ветроэнергетическая установка в таком случае как правило не эксплуатируется, поскольку имеющейся энергии ветра недостаточно для того, чтобы обеспечивать мощность, необходимую для работы ветроэнергетической установки, так что в результате мощность в сеть подаваться не может. Таким образом, здесь предлагается целенаправленно допускать этот режим вращения вхолостую, и при этом не отключать ветроэнергетическую установку. При этом нормальным было бы отключение установки, а предлагаемый поддерживающий режим предусматривает включение установки в этом режиме вращения вхолостую. Таким образом, ротор ветроэнергетической установки по меньшей мере немного вращается и при необходимости за счет этого при необходимости может даже, по меньшей мере кратковременно, предоставить мгновенный резерв.

Согласно еще одному варианту выполнения предлагается, чтобы поддерживающий режим включал в себя режим высокой частоты вращения, при котором ветроэнергетическая установка эксплуатируется с максимально высокой частотой вращения, не подавая в сеть мощность, или при этом подается лишь немного мощности, а именно меньше мощности, чем это было бы возможно при частоте вращения в нормальном режиме. Здесь ветроэнергетическая установка тоже меняет свою рабочую точку с нормального режима на поддерживающий режим. Теперь устанавливается не оптимальная частота вращения, при которой может вырабатываться максимальная мощность, а устанавливается максимально высокая частота вращения. Максимально высокая частота вращения в таком случае является частотой вращения, которая может достигаться за счет преобладающего ветра, причем, разумеется, учитываются предельные значения частоты вращения. Благодаря этой высокой, т.е. по меньшей мере повышенной частоте вращения выбирается рабочая точка с высокой кинетической энергией, т.е. высокой энергией вращения. Эта высокая энергия вращения может использоваться при необходимости как мгновенный резерв.

За счет этого также может предоставляться высокий мгновенный резерв, который может лежать выше того уровня, который ветроэнергетическая установка обычно предоставляет или должна предоставлять при имеющемся ветре.

Согласно одному варианту выполнения предлагается, чтобы поддерживающий режим относился к режиму с нулевой мощностью, поскольку частота вращения без подачи мощности повышается до максимальной частоты вращения. Это частично соответствует вышеописанному режиму с максимально высокой частотой вращения. Но здесь конкретно предлагается довести частоту вращения до максимальной частоты вращения, т.е., в частности, до номинальной частоты вращения и при этом сознательно не подавать в сеть никакой мощности. Сюда относится также и случай, когда установка эксплуатируется с номинальной частотой вращения, и мощность еще могла бы подаваться в сеть, но она не подается. Этот случай касается, в частности, такой ситуации, когда ветра достаточно, чтобы эксплуатировать ветроэнергетическую установку с такой максимальной частотой вращения. Таким образом, по меньшей мере с учетом колебаний ветра возможно также, что частота вращения продолжает возрастать, но здесь это предотвращается методами регулирования. В частности, ветроэнергетическая установка удерживается, тем самым, на этой максимальной частоте вращения. Для этого предусмотрено регулирование путем изменения угла установки лопасти, при котором роторные лопасти устанавливаются и методами регулирования постоянно дополнительно позиционируются так, чтобы эта максимальная частота вращения сохранялась. При этом возможно, что ветроэнергетическая установка производит, однако, так много мощности, что она таким образом может снабжать себя сама. В этом случае ветроэнергетическая установка производит энергию на собственные нужды, но не подает ее в сеть, однако, может мгновенно подавать, когда это необходимо.

Согласно другому варианту выполнения предлагается, чтобы поддерживающий режим включал в себя работу с приводом от двигателя, когда ротор ветроэнергетической установки приводится в действие электрической мощностью из питающей электрической сети. При этом указанная электрическая мощность для приведения в действие ветроэнергетической установки не должна превышать получаемую от солнца энергию, которая в настоящий момент подается солнечной энергетической установкой в электрическую питающую сеть. В противном случае такие солнечные энергетические установки в результате не смогли бы вносить свой вклад в поддержание этой сети. В принципе можно, однако, исходить из того, что в поддерживающем режиме, а именно, в частности, тогда, когда имеется много солнечного излучения, солнечные энергетические установки подают в электрическую питающую сеть существенно бόльшую мощность, чем это необходимо для работы с приводом от двигателя. Здесь тоже в основу положена идея, что упомянутые солнечные энергетические установки подают в сеть большую мощность, но мало этой мощности используется для того, чтобы эксплуатировать ветроэнергетические установки в режиме работы с приводом от двигателя, т.е., по существу, в режиме холостого хода. Роторные лопасти при этом устанавливаются так, что их аэродинамическое сопротивление при вращении минимально. Однако, эта небольшая мощность для приведения в действие ветроэнергетических установок дает возможность предоставлять большой мгновенный резерв за счет такого вращения роторов ветроэнергетических установок.

В частности, фотоэлектрические солнечные энергетические установки, которые, тем самым, вырабатывают ток непосредственно из солнечного излучения, с помощью предлагаемых вариантов могут поддерживаться ветроэнергетическими установками. Такие фотоэлектрические солнечные энергетические установки могут непосредственно и, в сущности, мгновенно колебаться в своей мощности, подаваемой в сеть, когда соответственно колеблется солнечное излучение. Таким образом, таким фотоэлектрическим солнечным энергетическим установкам не только трудно поддерживать сеть, но при колебании солнечного излучения они сами могут способствовать колебаниям в электрической питающей сети, если они являются достаточно доминирующими. Согласно изобретению это необходимо учитывать и компенсировать реакцией ветроэнергетических установок.

Согласно одному варианту выполнения предлагается, чтобы переход в поддерживающий режим зависел от преобладающей скорости ветра. В частности, при слабом ветре можно переходить в этот поддерживающий режим. При сильном ветре может оказаться предпочтительной работа ветроэнергетической установки в оптимальной рабочей точке, при которой сама ветроэнергетическая установка подает много мощности и, таким образом, в результате находится в рабочей точке, в которой она тоже имеет высокий поддерживающий потенциал.

Дополнительно или альтернативно предлагается, чтобы качество поддерживающего режима зависело от преобладающей скорости ветра. Например, при небольших скоростях ветра в поддерживающем режиме можно целенаправленно удерживать высокую частоту вращения, т.е. смещать рабочую точку в сторону более высокой частоты. При больших скоростях ветра рабочую точку можно не менять, но, в частности, можно по меньшей мере предлагать высокий мгновенный резерв.

Предпочтительно предлагается, чтобы переход в поддерживающий режим и, кроме того, или альтернативно, по меньшей мере качество поддерживающего режима зависели от по меньшей мере одного состояния электрической питающей сети или, соответственно, от по меньшей мере одной репрезентативной для него величины. Благодаря этому можно предвидеть, потребуется ли поддерживающий режим, а именно, в частности, может ли потребоваться добавочная мощность или мгновенный резерв, или, соответственно, в каком объеме он может потребоваться. Рассматриваемые ниже состояния сети могут учитываться непосредственно в смысле физической величины, или же посредством репрезентативного для нее значения. Последнее возможно, в частности, и тогда, когда соответствующая величина, т.е. соответствующее состояние сети не определяется непосредственно ветроэнергетической установкой.

Таким образом, предлагается смена или качество поддерживающего режима в зависимости от сети. Например, поддерживающий режим, в частности, может быть целесообразным тогда, когда частота сети уже имеет сравнительно низкое значение, т.е. когда она, например, лежит ниже номинальной частоты, но еще выше нижнего предельного значения.

Изменение частоты сети может также указывать на то, что вскоре может потребоваться поддерживающий режим. В частности, при спокойной сети, т.е. когда возникает мало изменений частоты сети и/или возникают лишь небольшие изменения частоты сети, поддерживающий режим требуется меньше, чем когда эта сеть скорее неспокойна в отношении изменений своей частоты.

Кроме того, полезно учитывать градиент изменения частоты сети, чтобы можно было оценить, потребуется ли поддерживающий режим. Таким образом, здесь производится количественный анализ изменения частоты сети по амплитуде ее изменения. Частотность изменения частоты здесь не учитывается. Однако, может оказаться предпочтительным учитывать как частотность изменение частоты сети, т.е. насколько неспокойна эта сеть, так и градиент изменения частоты сети, т.е. учитывать амплитуду изменения частоты.

Еще одним состоянием сети является напряжение сети. В частности, при сравнительно высоком напряжении необходимость поддерживающего режима вероятнее, чем при более низком напряжении сети. При этом, в частности, нужно учитывать свойство точки измерения для этого измерения напряжения сети, так как напряжение сети в сложной электрической питающей сети меняется в зависимости от места.

Предлагается также учитывать изменение напряжения сети. Например, падающее напряжение сети может указывать на надвигающуюся необходимость поддерживающего режима, даже если сначала это напряжение сети еще имеет сравнительно высокое значение.

Предлагается также, чтобы учитывался внешний сигнал о состоянии сети, который индицирует состояние сети. В зависимости от этого может выбираться поддерживающий режим, а при необходимости и его характеристики. При этом учитывается, что эксплуатант сети, который эксплуатирует эту электрическую питающую сеть, также имеет информацию об этой электрической питающей сети, в частности, из различных точек сети. В зависимости от этого могут быть сделаны более точные выводы о потребностях или ожидаемых результатах работы этой электрической питающей сети.

Согласно одному варианту предлагается учитывать долю частотных преобразователей, которая показывает отношение мощности, подаваемой в электрическую питающую сеть частотными преобразователями, к всей подаваемой в электрическую питающую сеть мощности. Если, например, эта доля частотных преобразователей в сети, т.е. только в пересчете на таким образом подаваемую мощность, составляет более 80%, а из нее на долю фотоэлектрических солнечных энергетических установок, которые тоже подают мощность в эту сеть посредством частотного преобразователя, приходится более 50%, то это может иметь последствия для электрической питающей сети.

Возможность определения доли частотных преобразователей могла бы состоять также в том, что это известно эксплуатанту электрической питающей сети, и эта информация передается на соответствующие ветроэнергетические установки.

Выбор поддерживающего режима может быть сделан также в зависимости от того, передает ли эксплуатант сети соответствующий сигнал запроса для затребования мгновенного резерва, т.е. будет ли мгновенный резерв затребован эксплуатантом сети. Это может также означать, что такой мгновенный резерв будет затребован в определенном объеме из расчета на подаваемую мощность. В этом случае такое зависимое от мощности затребование - с учетом подачи мощности от этих учтенных фотоэлектрических солнечных энергетических установок - могло бы пересчитываться на мгновенный резерв для ветроэнергетических установок, которые затем брали бы это на себя за указанные солнечные энергетические установки.

Согласно одному варианту выполнения предлагается, чтобы указанная по меньшей мере одна ветроэнергетическая установка переходила в поддерживающий режим и повышала свою частоту вращения по сравнению с номинальным режимом, когда указанная по меньшей мере одна солнечная энергетическая установка по меньшей мере подает в электрическую питающую сеть предварительно задаваемую минимальную долю своей номинальной мощности, 50% своей номинальной мощности, и кроме того, была определена потребность в мгновенном резерве. За счет этого может выбираться конкретно этот поддерживающий режим.

Предпочтительно предлагается, чтобы указанная по меньшей мере одна ветроэнергетическая установка длительное время эксплуатировалась в поддерживающем режиме с частотой вращения ротора, повышенной по сравнению с нормальным режимом, до тех пор, пока эта по меньшей мере одна солнечная энергетическая установка подает в электрическую питающую сеть по меньшей мере предварительно задаваемую минимальную долю своей номинальной мощности, в частности, по меньшей мере 50% своей номинальной мощности, и преобладающий ветер настолько слабый, что указанная по меньшей мере одна ветроэнергетическая установка может подавать в электрическую питающую сеть не более предварительно задаваемой максимальной доли своей номинальной мощности, в частности, не более 50% своей номинальной мощности,. В основу этого, в частности, положена идея, что учитывается синоптическая обстановка, а именно проще говоря, когда много солнца и мало ветра, и соответственно солнечные энергетические установки используются для подачи максимальной мощности, а ветроэнергетические установки, по существу, используются для поддержания электрической питающей сети, по меньшей мере для того, чтобы они могли при необходимости подать добавочную мощность.

Согласно одному варианту выполнения предлагается решение, которое характеризуется тем, что определяется потребность в относительном мгновенном резерве, причем она характеризует дополнительно подаваемую мощность в пересчете на контрольную мощность (Referenzleistung). Исходя из этой установленной потребности в относительном мгновенном резерве и из характеризующего солнечную энергетическую установку контрольного значения солнечного излучения (Solarreferenzleistung), определяется солярный мгновенный резерв, представляющий собой мощность, которая характеризует мгновенный резерв, который должен иметься в наличии или предоставляться солнечной энергетической установкой. Этот солярный мгновенный резерв является, таким образом, вычисленным значением, если предусматриваемый в целом мгновенный резерв распределяется в равных долях на производителей электрической энергии.

Для этого предлагается, чтобы указанная по меньшей мере одна ветроэнергетическая установка эксплуатировалась в поддерживающем режиме так, что она может предоставлять упомянутый определенный солярный мгновенный резерв. Предпочтительно она может предоставлять его дополнительно к мгновенному резерву, который она должна была бы подавать за счет своей собственной работы и указанного относительного мгновенного резерва. За счет этого, в частности, может выражаться в цифрах величина объединенного предоставления мгновенного резерва. При этом предлагается, чтобы производители энергии, которые не могут подавать или предоставлять рассчитанный для них мгновенный резерв, или могут сделать это лишь с большими издержками, могли отбирать его с подходящих для этого ветроэнергетических установок. Эти ветроэнергетические установки, в частности, в поддерживающем режиме могут тогда этот запрос взять с солнечных энергетических установок на себя.

Предпочтительно предлагается, что указанный относительный мгновенный резерв показывает энергию, подаваемую дополнительно к энергии, подаваемой в данный момент в электрическую питающую сеть или в релевантный участок сети. Согласно этому предложению контрольной мощностью является та, которая в данный момент подается в электрическую питающую сеть или которая подается в релевантный участок сети.

Кроме того, или альтернативно, контрольное значение солнечного излучения - это та получаемая от солнца энергия, которая в данный момент подается солнечной энергетической установкой в электрическую питающую сеть. Таким образом, здесь тоже ориентируются на актуальное фактическое значение.

Кроме того, или альтернативно, указанная по меньшей мере одна ветроэнергетическая установка эксплуатируется в поддерживающем режиме таким образом, что ее частота вращения выше, чем в нормальном режиме, чтобы за счет этого предоставить солярный мгновенный резерв для солнечной энергетической установки. В частности, благодаря этому она может обеспечивать предоставление или подачу этого солярного мгновенного резерва.

Предпочтительно указанный солярный мгновенный резерв рассчитывается как произведение относительного мгновенного резерва на подаваемую в данный момент солнечную энергию. При этом указанный относительный мгновенный резерв может быть сравнительно постоянной величиной, которая может быть просто умножена на подаваемую в данный момент солнечную энергию, которая в принципе известна, по меньшей мере для соответствующей солнечной энергетической установки.

В качестве опции предлагается, чтобы учитывалась весовая функция, в частности, путем умножения на положительный весовой коэффициент. Указанный солярный мгновенный резерв может, тем самым, изменяться дополнительно с помощью весовой функции, в частности, за счет того, что он умножается на положительный весовой коэффициент, который, в частности, может лежать в диапазоне от 0,5 до 2. Благодаря этому возможно подстраивание этого солярного мгновенного резерва, или возможен учет особых конкретных обстоятельств, например, конкретного местоположения в сети точки подключения в сеть, в которую подает энергию данная солнечная энергетическая установка.

Вышеизложенное и нижеследующее описания солнечных энергетических установок или во взаимосвязи с солнечными энергетическими установками касаются, в частности, предпочтительно фотоэлектрических солнечных энергетически установок.

Согласно одному варианту выполнения изобретения предлагается способ, который характеризуется тем, что для солнечной энергетической установки, или для комбинированной установки, которая содержит по меньшей мере одну солнечную энергетическую установку и по меньшей мере одну ветроэнергетическую установку, может рассчитываться предоставляемый солярный мгновенный резерв. Он показывает, какой мощности мгновенный резерв может запасать (держать наготове) указанная по меньшей мере одна ветроэнергетическая установка благодаря поддержке указанной по меньшей мере одной солнечной энергетической установкой, когда эта ветроэнергетическая установка эксплуатируется в соответствующем поддерживающем режиме. Для этого предлагается, чтобы указанный предоставляемый солярный мгновенный резерв рассчитывался в зависимости от энергии ветра, подаваемой в данный момент солнечной энергии, от подаваемой в нормальном режиме в данный момент указанной по меньшей мере одной ветроэнергетической установкой, и от состояния электрической питающей сети или, соответственно, от репрезентативной для него величины. Этот предоставляемый солярный мгновенный резерв является, таким образом, тем, который может предоставляться и при необходимости может запрашиваться, т.е. который не предоставляется или даже не подается в течение длительного времени. Таким образом, это - значение, которое показывает, какой должна быть подготовленная мощность предоставляемого солярного мгновенного резерва. Сюда входит подаваемая в данный момент солнечная энергия, поскольку она должна дополняться добавочной мощностью ветроэнергетической установки. Сюда входит также нормальный режим, в котором эта ветроэнергетическая установка могла бы эксплуатироваться, когда он не переходит в поддерживающий режим. Сюда входит также состояние электрической питающей сети, так как от него может в конце концов зависеть, есть ли вообще потребность в добавочной мощности.

Согласно изобретению, кроме того, предлагается ветроэнергетическая установка, которая может вырабатывать из ветра электрическую энергию для подачи в электрическую питающую сеть, и причем

- эта ветроэнергетическая установка содержит аэродинамический ротор с роторными лопастями, которые могут регулироваться по своему углу установки,

- ротор может эксплуатироваться с переменной частотой вращения, и

- эта ветроэнергетическая установка имеет связанный с аэродинамическим ротором генератор для выработки мощности генератора, причем

- ветроэнергетическая установка эксплуатируется в нормальном режиме, в котором она имеющуюся в распоряжении мощность ветра подает в электрическую питающую сеть до номинальной мощности, причем эта имеющаяся в распоряжении мощность ветра означает мощность, которая может добываться из ветра в зависимости от ветра и от технических пределов ветроэнергетической установки и может подаваться в электрическую питающую сеть, и

- ветроэнергетическая установка в зависимости от рабочей ситуации по меньшей мере одной солнечной энергетической установки, питающей ту же самую сеть, переходит из своего нормального режима в поддерживающий режим.

В частности, предлагается ветроэнергетическая установка, которая предназначена для осуществления способа согласно по меньшей мере вышеописанному варианту выполнения. Для этого она имеет, в частности, управляющий компьютер, на котором указанный способ записан в программном коде. Однако, возможно также, что установка связана с внешними вычислительными устройствами или, соответственно, имеет соответствующие интерфейсы, чтобы можно было учитывать необходимые для этого способа внешние величины. Также часть этого способа может осуществляться на внешнем управляющем компьютере или управляться им.

Предпочтительно имеется погодный модуль для аналитической обработки и/или записи метеорологических данных, который может также определять по величине интенсивность солнечного излучения. В основу этого положено понимание того, что определение солнечного излучения на указанной по меньшей мере одной ветроэнергетической установке может давать достаточно информации об имеющейся в распоряжении фотоэлектрической мощности фотоэлектрической солнечной энергетической установки, находящейся поблизости. Этот погодный модуль может иметь фотоэлемент для измерения света и/или интерфейс для приема внешних метеорологических данных.

Предлагается также ветряной парк с несколькими ветроэнергетическими установками. Ветряной парк имеет, таким образом, по меньшей мере две вышеописанные ветроэнергетические установки, и эти по меньшей мере две ветроэнергетические установки через общую точку подключения в сеть подают электрическую энергию в эту электрическую питающую сеть. Благодаря этому за счет использования нескольких ветроэнергетических установок указанный способ может, в частности, эффективно применяться, поскольку тем самым может создаваться большой потенциал мгновенного резерва или иной добавочной мощности.

Согласно изобретению предлагается также ветроэнергетическая система, содержащая по меньшей мере один вышеописанный ветряной парк и по меньшей мере одну солнечную энергетическую установку, причем эта по меньшей мере одна солнечная энергетическая установка подает энергию в ту же самую электрическую питающую сеть. Эта солнечная энергетическая установка при этом предпочтительно может подавать энергию через другую точку подключения в электрическую питающую сеть, чем указанный ветряной парк. Таким образом, достигается, что в принципе как ветряной парк, так и указанная по меньшей мере одна солнечная энергетическая установка могут эксплуатироваться независимо друг от друга. Однако, создается синергия, при которой ветроэнергетические установки, т.е. ветряной парк берет на себя решение задач по поддержанию сети, в частности, предоставление добавочной мощности или мгновенного резерва, вместо солнечной энергетической установки. Это происходит вследствие того, что ветроэнергетическая установка в зависимости от рабочей ситуации указанной по меньшей мере одной солнечной энергетической установки соответственно переходит из своего нормального режима в поддерживающий режим.

Ниже данное изобретение разъясняется более подробно на приведенных в качестве примера вариантах выполнения со ссылкой на прилагаемые чертежи. На чертежах показано следующее.

Фиг. 1 - ветроэнергетическая установка, вид в перспективе.

Фиг. 2 - схематичный вид ветряного парка.

Фиг. 3 - схематичный вид участка электрической питающей сети.

Фиг. 4 - возможные взаимосвязи между мощностью мгновенного резерва и изменением частоты в электрической питающей сети.

На Фиг. 1 показана ветроэнергетическая установка 100 с башней 102 и гондолой 104. На гондоле 104 установлен ротор 106 с тремя роторными лопастями 108 и кожухом 110 обтекателя. Ротор 106 при работе приводится ветром во вращательное движение и тем самым приводит в действие генератор на гондоле 104.

На Фиг. 2 показан ветряной парк 112, например, с тремя ветроэнергетическими установками 100, которые могут быть одинаковыми или разными. Эти три ветроэнергетические установки 100, таким образом, являются репрезентативными, в сущности, для любого числа ветроэнергетических установок одного ветряного парка 112. Эти ветроэнергетические установки 100 предоставляют свою мощность, в частности, произведенный ток через электрическую сеть 114 парка. При этом токи или, соответственно, мощности, произведенные отдельными ветроэнергетическими установками 100, суммируются, и зачастую предусмотрен трансформатор 116, который повышает напряжение в парке, чтобы затем в точке 118 подачи питающего напряжения, которая обобщенно обозначается как PCC, подавать его в питающую сеть 120. На Фиг. 2 показано упрощенное изображение ветряного парка 112, и, например, не показано никакой системы управления, хотя система управления, разумеется, есть. Сеть 114 парка может быть выполнена, например, иначе, за счет того, например, что трансформатор предусматривают на выходе каждой ветроэнергетической установки 100 (как пример другого варианта выполнения).

На Фиг. 3 показан участок электрической питающей сети 2, к которому подключены одна фотоэлектрическая солнечная энергетическая установка 4 и один ветряной парк 6 с ветроэнергетической установкой 7 (представлено схематично). Этот ветряной парк 6 может быть выполнен как ветряной парк 112 на Фиг. 2 и содержать ветроэнергетические установки 7, выполненные соответственно, как ветроэнергетическая установка 100 по Фиг. 1. Электрическая питающая сеть 2 может соответствовать электрической питающей сети 120 по Фиг. 2.

Репрезентативно для других потребителей или поставщиков на Фиг. 3 показан подключенный к этой электрической питающей сети 2 город 8, промышленный потребитель 10, которым может быть, например, фабрика, а в качестве другого производителя энергии показана мощная электростанция 12.

С помощью схематично обозначенного солнца 14 и обвисшего конусного ветроуказателя 16 показано, что на Фиг. 3 представлено общее состояние погоды для электрической питающей сети 2, при котором имеет место сильное солнечное излучение и слабый ветер. Соответственно, фотоэлектрическая солнечная энергетическая установка 4, которая упрощенно может обозначаться как PV-установка, вырабатывает большую электрическую мощность PPV, которая отдается в электрическую питающую сеть 2. Толщина этой стрелки, а также других стрелок, которые еще будут описаны, тоже по меньшей мере наглядно показывает уровень мощности. Таким образом, в электрическую питающую сеть PV-установка подает большую мощность PPV, которая делится на составляющие мощности P1 и P2, которые идут в разные области этой электрической питающей сети 2. Это показано лишь для наглядности, чтобы пояснить, что производимая этой PV-установкой 4 мощность PPV в принципе предоставляется в распоряжение электрической питающей сети 2.

Кроме того, составляющая мощность P3 обозначена тонкой стрелкой и поэтому должна составлять лишь незначительную долю от мощности PPV, подаваемой PV-установкой.

Эта дополнительная составляющая мощность P3 предоставляется в распоряжение ветряного парка 6. Следует учесть, что и это тоже служит лишь в качестве примера, и эта составляющая мощность P3 не обязательно должна быть произведена непосредственно этой PV-установкой 4. Более того, речь идет о том, что этот ветряной парк 6 получает составляющую мощность P3, которая значительно меньше, чем мощность PPV, подаваемая указанной PV-установкой. Таким образом, эта составляющая мощность P3 по меньшей мере численно может составлять часть подаваемой совместно мощности Ppv от PV-установки.

В этом наглядном примере на Фиг. 3, таким образом, исходили из того, что ветряной парк 6 в показанной ситуации не может вырабатывать мощность из ветра. В соответствии с этим составляющая мощность P3 используется для того, чтобы приводить во вращение 20 роторы 18. Эти роторы 18 могут соответствовать роторам 106 по Фиг. 1. Вращение обозначено соответствующими стрелками на Фиг. 3.

Таким образом, роторы 18 ветряного парка 6 приведены во вращение 20 и удерживаются в этом вращательном движении. Для этого может использоваться указанная составляющая мощность P3. Ветроэнергетические установки 7 ветряного парка 6, а, тем самым, в результате и этот ветряного парка 6 как таковой работают в поддерживающем режиме. В показанной ситуации по Фиг. 3, когда нет ветра, нормальным был бы режим, при котором ветроэнергетические установки выключены или в крайнем случае удерживаются в режиме ожидания.

Благодаря тому, что эти роторы 18 приведены во вращение 20, каждая ветроэнергетическая установка 7 обладает кинетической энергией в форме энергии вращения соответствующего ротора 18. Ветряной парк 6 в целом имеет, тем самым, большое количество энергии вращения. Следует обратить внимание на то, что в этом ветряном парке 6 схематично показано только четыре ветроэнергетические установки 7, однако, может быть и значительно больше ветроэнергетических установок в ветряном парке, и могут эксплуатироваться, как описывалось, например, более 20, более 50 или даже более 100 ветроэнергетических установок 7.

Имеющаяся энергия вращения при необходимости поддержания электрической питающей сети 2 может подаваться как мгновенный резерв мощности PM. Это обозначено для наглядности широкой прерывистой стрелкой. Таким образом, становится понятно, что этот мгновенный резерв мощности PM может подаваться при необходимости, но что он подается не длительное время, а только в короткие моменты, в которые необходимо соответствующее поддержание электрической питающей сети 2. Однако, в таком случае может подаваться большая добавочная мощность PM.

Такая подача этой добавочной мощности PM может потребоваться, например, тогда, когда к электрической питающей сети 2 подключается промышленный потребитель 10, или если внезапно большая мощность забирается в город 8.

На Фиг. 3 наглядно показан один вид поддерживающего режима для особой ситуации, при которой совсем нет ветра. Но нужно учитывать и другие варианты, например, когда имеется достаточно ветра, чтобы по меньшей мере вообще подавать какую-то мощность посредством ветряного парка 6 в электрическую питающую сеть 2. Согласно одному варианту ветряной парк 6 и, таким образом, ветроэнергетические установки 7 эксплуатируются в оптимальной рабочей точке, в которой, в частности, частота вращения роторов 18 имеет оптимальное для преобладающего ветра значение. Для выбора поддерживающего режима может сохраняться эта рабочая точка. И все-таки предлагается высокое значение мгновенного резерва мощности PM. Это может означать, что для зависящей от изменения частоты подачи мгновенного резерва мощности PM за основу берется иная зависимость, чем в нормальном режиме.

Такая ситуация в качестве примера показана на Фиг. 4. На диаграмме по Фиг. 4 представлен мгновенный резерв мощности PM в зависимости от изменения df/dt частоты для двух случаев. Этот мгновенный резерв мощности PM нормирован по максимально подаваемому мгновенному резерву мощности PMmax, который одинаков для обоих режимов работы. Это изменение частоты электрической питающей сети df/dt тоже нормировано, а именно по максимальному значению df/dt. Кроме того, нанесена -df/dt. Эта диаграмма на Фиг. 4 показывает, тем самым, в принципе отрицательные значения изменения df/dt частоты. Таким образом, нормированная абсцисса проходит от 0 до -1.

В качестве примера показаны две функциональные зависимости для мгновенного резерва мощности PM, а именно мгновенный резерв мощности PMS для поддерживающего режима и мгновенный резерв мощности PMN для нормального режима.

В этом наглядном примере градиент мгновенного резерва мощности PMS для поддерживающего режима вдвое больше, чем градиент мгновенного резерва мощности PMN для нормального режима. Кроме того, в поддерживающем режиме мгновенный резерв мощности PMS запрашивается раньше, т.е. при меньшем по модулю изменении df/dt частоты, чем это имеет место для мгновенного резерва мощности PMN, который здесь в качестве примера запрашивается только начиная с вдвое большего изменения df/dt частоты.

При условии, что мгновенный резерв мощности PM понимается как функция зависимости от изменения частоты, которая превышает начальное предельное значение, то мгновенный резерв мощности PMS поддерживающего режима соответственно имеет вдвое большее значение, чем мгновенный резерв мощности PMN нормального режима. Например, мгновенный резерв мощности PMS поддерживающего режима при нормированном изменении частоты 0,4 (т.е. оно на 0,2 выше его стартового значения) имеет нормированное значение мощности немного больше, чем 0,4, тогда как мгновенный резерв мощности PMN нормального режима при нормированном значении изменения частоты 0,6 (т.е. на 0,2 выше его стартового значения) имеет нормированное значение мощности примерно 0,2, и таким образом, равен половине от корреспондирующего значения мгновенного резерва мощности PMS поддерживающего режима.

Это тоже всего лишь пояснительный пример, и возможно, например, что оба этих стартовых значения нормального режима и поддерживающего режима идентичны и/или равны нулю.

Было установлено, что при высокой доле выработки тока с помощью возобновляемых источников энергии при определенных обстоятельствах может возникнуть потребность в предоставлении мгновенного резерва с помощью генерирующих систем на основе преобразователя частоты. При этом было установлено, что PV-системы могут реализовывать мгновенный резерв только за счет интеграции дополнительного аккумулятора. Для этого предлагается также использовать ветроэнергетические установки для предоставления мгновенного резерва, даже когда ветра нет, но подается пропорционально много PV-тока за счет солнечного излучения. К тому же предлагается приводить во вращение ветроэнергетические установки от двигателя, чтобы при необходимости мгновенного резерва поддержать сеть энергией ротора или, соответственно, энергией вращения. Здесь в основу положено понимание того, что при высоком покрытии потребности в токе за счет PV-установок по меньшей мере статистически как правило едва ли подается энергия от ветра, и поэтому емкости частотных преобразователей ветроэнергетических установок вряд ли полностью нагружены. Но имеются и другие возможности для реализации, как это уже пояснялось выше.

Предлагаемое изобретение позволяет также максимально улучшить интегрирование в сеть возобновляемых источников энергии в целом. Так как в принципе предоставление в сеть мгновенного резерва может потребоваться в любой момент времени, то это можно реализовать с помощью ветроэнергетических установок. При этом было установлено, что ветроэнергетические установки в общем очень хорошо подходят для предоставления мгновенного резерва, так как масса ротора, в частности, момент инерции массы каждого ротора очень высок по отношению к установленной мощности.

Тем самым, может достигаться улучшение интегрирования в сеть возобновляемых источников энергии в целом и, в частности, ветроэнергетических установок и фотоэлектрических установок, и таким образом, при выработке тока может обеспечиваться высокая доля возобновляемых источников энергии. Также обычные электростанции могут заменяться электростанциями на основе ветроэнергетических установок. К тому же сетевой верхний предел для пристраивания возобновляемых источников энергии, которые могли бы устанавливаться вследствие недостаточного поддержания сети, или уже имеются, может быть обойден или по меньшей мере повышен. В принципе, благодаря предлагаемым решениям возможно также осуществление сетей, полностью питаемых от инверторов, или по меньшей мере их реализация упрощается.

В качестве решения предлагается также работа с приводом от двигателя или режим вращения вхолостую ветроэнергетических установок для предоставления мгновенного резерва за счет кинетической энергии ротора. Важное преимущество данного изобретения заключается в отказе от вращающихся фазосдвигающих устройств или, соответственно, от встраивания аккумуляторов в фотоэлектрические системы (PV-системы) для предоставления мгновенного резерва. Тем самым могут быть снижены не только затраты на интегрирование в сеть возобновляемых источников энергии в целом, но предлагаемое решение предоставляет эксплуатантам ветроэнергетических установок также возможность предлагать дополнительные услуги систем. Такая функциональность должна быть записана в программном коде, в частности, в управляющей системе установок или парка.

1. Способ управления по меньшей мере одной ветроэнергетической установкой (7) для выработки электрической энергии из ветра для подачи в электрическую питающую сеть (2), при котором

- ветроэнергетическая установка (7) имеет аэродинамический ротор (18) с роторными лопастями, которые могут регулироваться по своему углу установки,

- ротор (18) может эксплуатироваться с изменяемой частотой вращения ротора, и

- ветроэнергетическая установка (7) имеет связанный с аэродинамическим ротором (18) генератор для выработки мощности, причем

- ветроэнергетическая установка (7) эксплуатируется в нормальном режиме, в котором имеющуюся в распоряжении мощность ветра она подает до номинальной мощности в электрическую питающую сеть (2), причем эта имеющаяся в распоряжении мощность ветра представляет собой мощность, которая может генерироваться из ветра и подаваться в электрическую питающую сеть (2) ветроэнергетической установкой (7), и

- указанная ветроэнергетическая установка (7) переходит из своего нормального режима в поддерживающий режим, если в ту же самую электрическую питающую сеть (2), в которую подает энергию ветроэнергетическая установка (7), подается в значительном количестве энергия от солнечной энергетической установки.

2. Способ по п. 1, отличающийся тем, что ветроэнергетическая установка (7) в поддерживающем режиме может предоставлять в распоряжение больший мгновенный резерв, чем в нормальном режиме.

3. Способ по п. 1 или 2, отличающийся тем, что в зависимости от изменения df/dt частоты f, измеряемой в электрической питающей сети (2), в эту электрическую питающую сеть (2) подается мгновенный резерв мощности PM, причем между нормальным режимом и поддерживающим режимом предусмотрены такие различия в зависимости мгновенного резерва мощности PM от изменения df/dt частоты, что при одинаковом изменении df/dt частоты величина мгновенного резерва мощности PM в поддерживающем режиме больше, чем в нормальном режиме, в частности, мгновенный резерв мощности PM рассчитывается по формуле PM=k*df/dt, где k - коэффициент зависимости, который по величине в поддерживающем режиме больше, чем в нормальном режиме.

4. Способ по любому из предыдущих пунктов, отличающийся тем, что для поддержания электрической питающей сети (2) предлагается добавочная мощность, в частности мгновенный резерв мощности, который может запрашиваться для подачи в электрическую питающую сеть (2) или может подаваться в зависимости от устойчивости сети, причем указанная по меньшей мере одна ветроэнергетическая установка (7) в поддерживающем режиме предлагает бόльшую добавочную мощность, чем в нормальном режиме.

5. Способ по любому из предыдущих пунктов, отличающийся тем, что ветроэнергетическая установка (7) в поддерживающем режиме по меньшей мере время от времени подает в электрическую питающую сеть (2) меньшую мощность, чем в нормальном режиме, или отбирает мощность из этой электрической питающей сети (2), чтобы за счет этого предоставить повышенный мгновенный резерв.

6. Способ по любому из предыдущих пунктов, отличающийся тем, что поддерживающий режим ветроэнергетической установки (7) включает в себя по меньшей мере один режим, выбранный из группы, включающей

- режим вращения вхолостую, при котором ротор (18) ветроэнергетической установки (7) приводится ветром во вращение, не вырабатывая при этом мощности,

- режим высокой частоты вращения, при котором ротор (18) ветроэнергетической установки (7) вращается с высокой частотой вращения, и при этом мощность не подается или подается лишь небольшая мощность, и

- режим с нулевой мощностью, при котором частота вращения без подачи мощности повышается до максимальной частоты вращения, и

- режим работы с приводом от двигателя, при котором ротор (18) ветроэнергетической установки (7) приводится в действие за счет электрической мощности (PPV) из этой электрической питающей сети (2), которая не превышает полученную от солнца энергию, подаваемую в данный момент солнечной энергетической установкой в электрическую питающую сеть (2).

7. Способ по любому из предыдущих пунктов, отличающийся тем, что

- переход в поддерживающий режим зависит от преобладающей скорости ветра, и, кроме того, или альтернативно,

- по меньшей мере один параметр поддерживающего режима зависит от преобладающей скорости ветра.

8. Способ по любому из предыдущих пунктов, отличающийся тем, что

- переход в поддерживающий режим и, кроме того, или альтернативно,

- по меньшей мере один параметр поддерживающего режима зависит от по меньшей мере одного состояния электрической питающей сети (2) или, соответственно, от репрезентативной для него величины, выбранной из группы, включающей

- частоту сети,

- изменение частоты сети,

- градиент изменения частоты сети,

- напряжение сети,

- изменение напряжения сети,

- внешний сигнал статуса сети, указывающий на состояние сети,

- долю частотных преобразователей, которая показывает отношение мощности, подаваемой в электрическую питающую сеть (2) частотными преобразователями, ко всей подаваемой в электрическую питающую сеть (2) мощности,

и

- передаваемый от эксплуатанта сети сигнал запроса для затребования мгновенного резерва.

9. Способ по любому из предыдущих пунктов, отличающийся тем, что ветроэнергетическая установка (7) переходит в поддерживающий режим и повышает свою частоту вращения по сравнению с номинальным режимом, когда

- указанная по меньшей мере одна солнечная энергетическая установка подает в электрическую питающую сеть (2) по меньшей мере предварительно задаваемую минимальную долю своей номинальной мощности, в частности 50% своей номинальной мощности, и

- была определена потребность в мгновенном резерве.

10. Способ по любому из предыдущих пунктов, отличающийся тем, что указанная по меньшей мере одна ветроэнергетическая установка (7) эксплуатируется длительное время в поддерживающем режиме с частотой вращения ротора, повышенной по сравнению с нормальным режимом, до тех пор, пока

- указанная по меньшей мере одна солнечная энергетическая установка подает в электрическую питающую сеть (2) по меньшей мере предварительно задаваемую минимальную долю своей номинальной мощности, в частности по меньшей мере 50% своей номинальной мощности, и

- преобладающий ветер настолько слабый, что указанная по меньшей мере одна ветроэнергетическая установка (7) может подавать в электрическую питающую сеть (2) не более предварительно задаваемой максимальной доли своей номинальной мощности, в частности не более 50% своей номинальной мощности.

11. Способ по любому из предыдущих пунктов, отличающийся тем, что

- определяют потребность в относительном мгновенном резерве, причем этот относительный мгновенный резерв характеризует дополнительно подаваемую мощность в пересчете на контрольную мощность,

- на основе установленной потребности в относительном мгновенном резерве и контрольного значения солнечного излучения, характеризующего солнечную энергетическую установку, определяется солярный мгновенный резерв как мощность, которая характеризует мгновенный резерв, который должен быть наготове у солнечной энергетической установки или предоставляться ею, и

- указанная по меньшей мере одна ветроэнергетическая установка (7) эксплуатируется в поддерживающем режиме так, что она может предоставлять этот определенный солярный мгновенный резерв.

12. Способ по п. 11, отличающийся тем, что

- относительный мгновенный резерв показывает дополнительно подаваемую мощность в пересчете на мощность, подаваемую в данный момент в электрическую питающую сеть (2) или в релевантный участок сети, и/или

- контрольное значение солнечного излучения показывает получаемую от солнца энергию, подаваемую в данный момент солнечной энергетической установкой в электрическую питающую сеть (2), и/или

- указанная по меньшей мере одна ветроэнергетическая установка (7) эксплуатируется в поддерживающем режиме так, что она имеет повышенную частоту вращения по сравнению с ее нормальным режимом, чтобы благодаря этому предоставить солярный мгновенный резерв за солнечную энергетическую установку.

13. Способ по п. 11 или 12, отличающийся тем, что

- солярный мгновенный резерв получается как произведение относительного мгновенного резерва на подаваемую в данный момент энергию, получаемую от солнца, причем при необходимости

- учитывается весовая функция, в частности, путем умножения этого солярного мгновенного резерва на положительный весовой коэффициент.

14. Способ по любому из предыдущих пунктов, отличающийся тем, что для солнечной энергетической установки или для комбинированной установки, содержащей по меньшей мере одну солнечную энергетическую установку и указанную по меньшей мере одну ветроэнергетическую установку (7), в зависимости от

- подаваемой в данный момент энергии, получаемой от солнца,

- мощности, полученной от ветра и в нормальном режиме подаваемой в данный момент по меньшей мере одной ветроэнергетической установкой (7), и

- состояния электрической питающей сети (2) или, соответственно, репрезентативной для него величины,

- рассчитывают предоставляемый солярный мгновенный резерв, который показывает, какой величины мгновенный резерв может иметь наготове указанная по меньшей мере одна ветроэнергетическая установка (7) благодаря поддержке от указанной по меньшей мере одной солнечной энергетической установки, когда эта ветроэнергетическая установка (7) эксплуатируется в соответствующем поддерживающем режиме.

15. Ветроэнергетическая установка (7) для выработки электрической энергии из ветра для подачи в электрическую питающую сеть (2), причем

- эта ветроэнергетическая установка (7) имеет аэродинамический ротор (18) с роторными лопастями, которые выполнены с возможностью регулировки по своему углу установки,

- ротор (18) выполнен с возможностью эксплуатации с изменяемой частотой вращения ротора, и

- эта ветроэнергетическая установка (7) имеет связанный с аэродинамическим ротором (18) генератор для выработки мощности, причем

- ветроэнергетическая установка (7) эксплуатируется в нормальном режиме, при котором она имеющуюся в распоряжении мощность ветра подает до номинальной мощности в электрическую питающую сеть (2), причем эта имеющаяся в распоряжении мощность ветра характеризует мощность, которая может генерироваться из ветра ветроэнергетической установкой (7) и подаваться в электрическую питающую сеть (2), и

- ветроэнергетическая установка (7) выполнена с возможностью переходить из своего нормального режима в поддерживающий режим, если в ту же самую электрическую питающую сеть (2), в которую подает энергию ветроэнергетическая установка (7), подается в значительном количестве энергия от солнечной энергетической установки.

16. Ветроэнергетическая установка (7) по п. 15, отличающаяся тем, что она выполнена с возможностью осуществления способа по любому из пп. 1-14, причем она, в частности, содержит управляющий компьютер, предназначенный для реализации способа.

17. Ветряной парк (6), содержащий по меньшей мере две ветроэнергетические установки (7) по п. 15 или 16, причем эти ветроэнергетические установки (7) через общую точку подключения в сеть подают энергию в электрическую питающую сеть (2).

18. Ветроэнергетическая система, содержащая по меньшей мере один ветряной парк (6) по п. 17 и по меньшей мере одну солнечную энергетическую установку, причем указанная по меньшей мере одна солнечная энергетическая установка подает энергию в ту же самую электрическую питающую сеть (2), но предпочтительно через другую точку подключения в сеть, и причем ветроэнергетические установки (7) ветряного парка (6) переходят из своего нормального режима в поддерживающий режим, если в электрическую питающую сеть (2) подается в значительном количестве энергия от солнечной энергетической установки.



 

Похожие патенты:

Изобретение относится к устройствам, атмосферным установкам, для преобразования энергии воздушного потока, также относится к области электроэнергетики и предназначено для производства электроэнергии с использованием нетрадиционных возобновляемых источников.

Изобретение относится к ветроэнергетике, в частности к ветроэлектрогенераторам сегментного типа, в качестве ротора которых выступает ветроколесо. Технический результат - уменьшение момента трогания, что позволяет увеличить производительность.

Изобретение относится к ветроэнергетической установке (100). Ветроэнергетическая установка (100) с одной или несколькими роторными лопастями (108), ступицей (106) ротора, на которой установлена одна или несколько роторных лопастей, и генератором (130) для генерации электрической энергии, причем генератор содержит статор (132) генератора и соединенный без проворачивания со ступицей ротора якорь (134) генератора, имеющий возможность вращения вокруг оси (А), причем ступица ротора и якорь генератора имеют общую основную подшипниковую опору (1), которая разделена на два подшипниковых сегмента (3a, 3b), разнесенные друг от друга в направлении оси.

Изобретение относится к ветроэнергетике. Ветроэлектрогенератор, выполненный с возможностью установки на платформу и содержащий стержень, выполненный с возможностью совершать колебательные движения под воздействием ветра, катушку и магнит.

Настоящее изобретение относится к системе генерирования ветровой электроэнергии с использованием струйного течения. Система генерирования ветровой электроэнергии реализована для включения в себя летательного аппарата, выполненного с возможностью выработки электроэнергии посредством генерирования ветровой электроэнергии, плавая в воздухе и летая автономно без лебедки, и выполненного с возможностью передачи выработанной электроэнергии на землю, и земного узла приема, выполненного с возможностью получать сигнал электроэнергии, передаваемый с летательного аппарата, и преобразовывать сигнал электроэнергии в электричество, в которой летательный аппарат входит в место генерирования электроэнергии или выходит из места генерирования электроэнергии посредством регулирования плавучести, летательный аппарат вырабатывает электроэнергию посредством генерирования ветровой электроэнергии, оставаясь в верхней части тропосферы или поблизости от стратосферы, где генерируется струйное течение, и летательный аппарат включает в себя пропеллер, выполненный с возможностью вращаться в одном направлении по причине струйного течения, генератор электроэнергии, выполненный с возможностью выработки электроэнергии путем преобразования механической энергии, по причине вращательного усилия пропеллера, в электрическую энергию, узел управления генерированием электроэнергии, выполненный с возможностью управления входом или выходом в или из места генерирования электроэнергии, узел регулирования плавучести, выполненный с возможностью увеличения или уменьшения плавучести в соответствии с управлением узлом управления генерированием электроэнергии, узел преобразования лазера, выполненный с возможностью преобразования электроэнергии, выработанной генератором электроэнергии, в лазер, и узел излучения лазера, выполненный с возможностью передачи лазера, преобразованного узлом преобразования лазера, на землю.

Изобретение относится к области ветроэнергетики. Ветроэнергетическая установка содержит платформу (1), имеющую палубу (14) и раму (4).

Ветроэнергетическая установка содержит лопасть вентилятора, вращающееся устройство, которое кинетически соединено с лопастью вентилятора с возможностью осуществлять вращение вместе с лопастью вентилятора, стопорное кольцо, выполненное для обхватывания вращающегося устройства, и энергогенерирующее устройство с валом силового привода, кинетически подсоединенным к вращающемуся устройству.

Изобретение относится к области преобразования энергии ветра в электрическую энергию. Преобразователь ветровой энергии, содержащий опорно-несущую конструкцию 1, постоянные магниты 2, установленные в трубах 3 из магнитопрозрачного материала и направленные одноименными полюсами друг к другу.

Изобретение относится к области ветроэнергетики. Ветроротор содержит вертикальный вал, расположенные на валу нижний кронштейн и верхний кронштейн со ступицей, три изогнутые наружу лопасти, неподвижно прикрепленные обоими концами к верхнему и нижнему кронштейнам, и соединен с электрогенератором. Лопасти выполнены изогнутыми по форме, описываемой формулой цепной линии равного сопротивления. Верхний и нижний кронштейны выполнены с обтекаемым профилем. Изобретение направлено на повышение эффективности преобразования кинетической энергии ветрового потока в механическую энергию вращения и повышение механической прочности ветроротора. 2 з.п. ф-лы, 5 ил.

Изобретение касается способа управления по меньшей мере одной ветроэнергетической установкой для выработки электрической энергии из ветра для подачи в электрическую питающую сеть. Способ управления по меньшей мере одной ветроэнергетической установкой для выработки электрической энергии из ветра для подачи в электрическую питающую сеть, при котором ветроэнергетическая установка имеет аэродинамический ротор с роторными лопастями и связанный с аэродинамическим ротором генератор для выработки мощности. Ветроэнергетическая установка эксплуатируется в нормальном режиме, в котором имеющуюся в распоряжении мощность ветра она подает до номинальной мощности в электрическую питающую сеть, причем эта имеющаяся в распоряжении мощность ветра представляет собой мощность, которая может генерироваться из ветра и подаваться в электрическую питающую сеть ветроэнергетической установкой. Ветроэнергетическая установка переходит из своего нормального режима в поддерживающий режим, если в ту же самую электрическую питающую сеть, в которую подает энергию ветроэнергетическая установка, подается в значительном количестве энергия от солнечной энергетической установки. Изобретение направлено на предоставление мгновенного резерва в сеть в любой момент времени. 4 н. и 14 з.п. ф-лы, 4 ил.

Наверх