Способ получения объёмных наноструктурированных полуфабрикатов из сплавов с памятью формы на основе никелида титана (варианты)

Изобретение относится к металлургии, а именно к получению прутков из сплава с памятью формы на основе никелида титана (Ti-Ni), и может быть использовано при производстве объемных и длинномерных полуфабрикатов из сплавов на основе никелида титана с памятью формы. Способ получения объемных наноструктурированных прутков из сплавов с памятью формы на основе никелида титана включает равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде. Равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов. После равноканального углового прессования может быть проведена ротационная ковка в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки. Обеспечивается повышение механических и функциональных свойств полуфабрикатов из Ti-Ni путем формирования в них УМЗ структуры: смешанной нанокристаллической и наносубзеренной после РКУП и после деформационного отжига, смешанной наносубзеренной и субмикрокристаллической после равноканального углового прессования, ротационной ковки и последеформационного отжига. 2 н.п. ф-лы, 1 табл., 2 пр.

 

Изобретение относится к металлургическому производству, конкретно к получению прутков из сплавов с памятью формы (СПФ) на основе никелида титана марки ТН-1, и может быть использовано в промышленности, медицине и технике. Особенно актуально использование полученных результатов для производства изделий и устройств с повышенными требованиями к функциональным характеристикам. Использование наноструктурированных полуфабрикатов из никелида титана позволит существенно повысить надежность и долговечность существующих устройств (в медицине: е хирургические клипсы, скобки, фиксаторы, имплантаты; в технике: термочувствительные элементы, актуаторы и др.), действующих на основе эффекта памяти формы, снизить их металлоемкость и значительно расширить сферу применения данной группы сплавов.

Известен способ получения длинномерных прутков из сплавов на основе никелида титана, заключающийся в применении ротационной ковки в интервале температур 300-500°С с суммарной степенью деформации 40-90%.

Недостатком данного способа можно считать температурно-деформационные режимы обработки никелида титана, не позволяющие сформировать близкую к нанокристаллической структуру, что обуславливает пониженный по сравнению с предлагаемым способом комплекса свойств. (Патент РФ №2536614, МПК C22F 1/10 C22F 1/18 С22С 1/02, 2013 г.)

Известен способ получения прутка наностуктурного сплава титан-никель с эффектом памяти формы с размером зерна менее 0,1 мкм и высокоугловой разориентировкой зерен (не менее 50% зерен) заключающийся в следующем. Предварительно отоженную заготовку подвергают интенсивной пластической деформации методом равноканального углового прессования (РКУП) со степенью накопленной деформации не менее 4 при температуре не выше 400°С, а затем деформации кузнечной вытяжкой и/или волочением с суммарной накопленной степенью деформации не менее 60% в интервале температур 450-200°С. (Патент РФ №2503733, МПК C22F 1/16 B82Y 40/00 B21J 5/00, 2018 г.).

Недостатки данного способа заключаются в том, что непосредственно после РКУП в СПФ Ti-Ni не удается сформировать структуру, близкую к нанокристаллической. Кроме того, кузнечная вытяжка приводит к неравномерному распределению деформации по сечению заготовки, а волочение возможно производить только после получения заготовки малого диаметра (менее 5 мм).

Ближайшим аналогом к предлагаемому изобретению является способ получения заготовки из сплава Ti49,3Ni50,7, заключающийся в комбинировании РКУП и осадки с целью формирования нанокристаллической структуры в объемных образцах (Патент РФ №2641207, МПК C22F 1/16 B82Y 40/00 B21J 5/00, 2018 г.).

Недостатки данного способа состоят в том, что, во-первых, получение наноструктурного состояния и заметное улучшение комплекса свойств наблюдается только после осадки. Непосредственно после РКУП получить подобную структуру не удается. Во-вторых, к недостаткам процесса осадки можно отнести кривизну конечного геометрического профиля изделия ввиду бочкообразования и неравномерность деформации, приводящую к анизотропии свойств. В-третьих, в данном способе отсутствует возможность получения длинномерных заготовок круглого сечения, которые обычно используются для изготовления различных изделий медицинского и технического назначения.

Технический результат, решаемый изобретением, заключается в получении объемных и длинномерных наноструктурированных полуфабрикатов из СПФ Ti-Ni круглого сечения, сочетающих высокие значения механических и функциональных свойств.

Технический результат достигается тем, что равноканальное угловое прессование горячекатаной заготовки после закалки в воду в интервале температур 700-800°С проводят в кавазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 град, далее осуществляют последеформационный отжиг в течение 1-2 часов при температуре 350-450°С. После применения равноканального углового прессования и перед отжигом при необходимости получения прутков меньшего диаметра осуществляют ротационную ковку в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки.

Сущность заявленного способа заключается в проведении РКУП в квазинепрерывном режиме на первом этапе, ротационной ковки (при необходимости) на втором этапе, и последеформационного отжига, на заключительном этапе. РКУП горячекатаной заготовки осуществляют в квазинепрерывном режиме, т.е. без пауз и дополнительных подогревов между проходами, что позволяет заметно уменьшить разупрочнение заготовки между проходами, и приводит к формированию смешанной нанокристаллической и наносубзеренной структуры непосредственно после РКУП, что позволяет исключить необходимость проведения последующих технологических операций для дополнительного измельчения структуры. РКУП в квазинепрерывном режиме проводят в интервале температур 350-450°С. Проведение РКУП при температуре выше 450°С приводит к значительному динамическому разупрочнению заготовки, которое не позволяет сформировать требуемую структуру. Проведение РКУП при температуре ниже 350°С приводит к преждевременному разрушению заготовки. Ротационную ковку после РКУП следует проводить только с целью получения требуемого конечного диаметра заготовки. Она может быть исключена из технологического цикла, в том случае, когда для производства изделий медицинского или технического назначения подходит заготовка непосредственно после РКУП. Последеформационный отжиг может производиться как непосредственно после изготовления наноструктурной заготовки, так и после изготовления из нее требуемого изделия на этапе запоминания требуемой формы.

Проведение РКУП в квазинепрерывном режиме в интервале температур 350-450°С и последующий отжиг при температуре деформации позволяет сформировать в объемной заготовке смешанную нанокристаллическую и наносубзеренную структуру, обеспечивающую значение полностью обратимой деформации 9.5%.

По первому варианту способ осуществляется следующим образом. Горячекатаная или литая заготовки из сплава Ti-Ni подвергается закалке в диапазоне температур 700-850°С с охлаждением в воде. Далее проводят РКУП в казинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 градусов. Последеформационный отжиг проводят в интервале температур 350-450°С либо непосредственно после изготовления наноструктурной заготовки, либо на этапе запоминания требуемой формы конечным изделием.

По второму варианту способ осуществляется следующим образом. Горячекатаная или литая заготовки из сплава Ti-Ni подвергается закалке в диапазоне температур 700-850°С с охлаждением в воде. Далее проводят РКУП в казинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120 градусов. Далее проводят ротационную ковку в интервале температур (350-400°С) до требуемого конечного диаметра, с промежуточными нагревами до температуры деформации, не превышающими 15-25 мин, и с относительной степенью деформации за проход 1-15% во избежание разрушения заготовки. Последеформационный отжиг проводят в интервале температур 350-450°С либо непосредственно после изготовления наноструктурной заготовки, либо на этапе запоминания требуемой формы конечным изделием.

Результаты апробации заявленного способа приведены в виде конкретных примеров.

Пример №1. Исходным материалом служил пруток из сплава Ti-50.2 ат. % Ni диаметром 20 мм и длиной 90 мм, полученный горячей поперечно-винтовой прокаткой. Перед процессом РКУП образец отжигали в течение 30 минут при температуре 750°С с охлаждением в воде. Далее осуществляли РКУП с углом пресечения каналов 120 градусов в квазинепрерывном режиме при температуре 400°С за 7 проходов. После этого осуществляли последеформационный отжиг при температуре 400°С в течение 1 часа с охлаждением в воде. В результате применения данного способа в заготовке диаметром 20 мм и длиной 90 мм была сформирована смешанная нанокристаллическая и наносубзеренная структура со средним размером структурных элементов 95±15 нм и заметно увеличен комплекс свойств. Полученные в результате применения данного способа механические и функциональные свойства приведены в таблице 1. В качестве контрольной обработки использовали пруток, подвергнутый отжигу при температуре 750°С в течение 30 минут с охлаждением в воде.

Пример №2. Исходным материалом служил пруток из сплава Ti-50.0 ат. % Ni диаметром 20 мм и длиной 100 мм, полученный горячей поперечно-винтовой прокаткой. Перед процессом РКУП образец отжигали в течение 30 минут при температуре 750°С с охлаждением в воде. Далее осуществляли процесс РКУП с углом пресечения каналов 120 градусов в квазинепрерывном режиме при температуре 400°С за 5 проходов. После этого осуществляли ротационную ковку до диаметра 12 мм при температуре 350°С с единичными частными обжатиями 1-10%. После этого заготовка подвергалась последеформационному отжигу при температуре 400°С в течение 1 часа с охлаждением в воде. В результате применения данного способа в заготовке была получена смешанная нанокристаллическая и субмикрокристаллическая структура со средним размером структурных элементов 110±15 нм с улучшенным комплексом свойств. Полученные в результате применения данного способа механические и функциональные свойства приведены в таблице 1.

Исходя из представленных примеров можно заключить, что благодаря заявленному способу удалось получить объемные и длинномерные качественные прутки из СПФ Ti-Ni с сочетанием высоких механических и функциональных свойств. Из полученных прутков возможно изготовление изделий, технического и медицинского назначения, действующих на основе эффекта памяти формы.

Технико-экономический эффект заявленного способа состоит в обеспечении возможности получения объемных наноструктурных полуфабрикатов из СПФ Ti-Ni с улучшенными механическими и функциональными свойствами. Использование данных полуфабрикатов позволит существенно повысить надежность и долговечность существующих устройств (в медицине: самоизвлекаемые хирургические скобки, сосудистые стенты, имплантаты; в технике: термочувствительные элементы, актуаторы и др.), действующих на основе эффекта памяти формы, снизить их металлоемкость и значительно расширить сферу применения данного сплава.

1. Способ получения объемных наноструктурированных прутков из сплавов на основе никелида титана с памятью формы, включающий равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде, отличающийся тем, что равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, далее осуществляют последеформационный отжиг при температуре 350-450°С в течение 1-2 часов.

2. Способ получения объемных наноструктурированных прутков из сплавов на основе никелида титана с памятью формы, включающий равноканальное угловое прессование горячекатаной заготовки после закалки в интервале температур 700-800°С с охлаждением в воде, отличающийся тем, что равноканальное угловое прессование проводят в квазинепрерывном режиме в интервале температур 350-450°С за 5-7 проходов с углом пересечения каналов 110-120°, после чего осуществляют ротационную ковку в интервале температур 350-400°С с единичными обжатиями 1-15% до требуемого конечного диаметра заготовки, далее проводят последеформационный отжиг при температуре 350-450°С в течение 1-2 часов.



 

Похожие патенты:

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов, и может быть использовано при изготовлении деталей двигателей, в медицине и деталей в других отраслях промышленности, работающих в условиях изнашивания.

Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов.

Изобретение относится к металлургии, а именно упрочняющей обработке изделий аддитивного производства для повышения их трибологических свойств, и может быть использовано в различных областях машиностроения для упрочнения поверхностей деталей.

Изобретение относится к области металлургии, в частности к титановым сплавам, которые могут быть использованы для изготовления деталей, испытывающих ударные нагрузки.

Изобретение относится к области металлургии, а именно к титановым сплавам, имеющим высокое соотношение прочность/вес, которые могут быть использованы для изготовления крепежных изделий.

Изобретение относится к способам формирования профилированных деталей из титанового сплава с высокой прочностью и коррозионной стойкостью. Способ получения детали из титанового сплава включает нагревание отлитого слитка или кованой заготовки из титанового сплава, инициирование экструзии нагретого слитка или заготовки, когда температура нагретого слитка или заготовки выше температуры бета-перехода, с образованием экструдированной детали с профилем, близким к конечному, причем экструдированная деталь с профилем, близким к конечному, имеет неплоскую форму, которая выбрана из группы, состоящей из: π-образной, С-образной, Т-образной, Н-образной, I-образной и L-образной.

Изобретение относится к способам формирования профилированных деталей из титанового сплава с высокой прочностью и коррозионной стойкостью. Способ получения детали из титанового сплава включает нагревание отлитого слитка или кованой заготовки из титанового сплава, инициирование экструзии нагретого слитка или заготовки, когда температура нагретого слитка или заготовки выше температуры бета-перехода, с образованием экструдированной детали с профилем, близким к конечному, причем экструдированная деталь с профилем, близким к конечному, имеет неплоскую форму, которая выбрана из группы, состоящей из: π-образной, С-образной, Т-образной, Н-образной, I-образной и L-образной.

Изобретение относится к области получения наноструктурного технически чистого титана с повышенными механическими и коррозионными свойствами и способу его обработки и может быть использовано в различных областях техники, в том числе в химической промышленности.

Изобретение относится к металлургии, в частности к способам изготовления труб, трубных полуфабрикатов из металлического гафния с содержанием основного металла не менее 98,8 мас.%, используемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности.

Изобретения относятся к области обработки металлов давлением и их термической обработки, в частности к производству изделий из труднодеформируемых, высокопрочных металлов и сплавов, включая титан и его сплавы, нитинол.

Использование: для покрытия подложки покрытием с низкой отражательной способностью. Сущность изобретения заключается в том, что способ покрытия подложки углеродными наноструктурами, включающий стадии: (i) получения суспензии углеродных наноструктур в растворителе; (ii) предварительного нагрева подложки до температуры, достаточной для того, чтобы вызвать испарение растворителя при контакте суспензии с подложкой; и последующего (iii) нанесения суспензии на подложку посредством распыления; (iv) поддержания во время стадии (iii) температуры подложки, достаточной для поддержания испарения растворителя, наносимого распылением; (v) повторения стадий (iii) и (iv) до тех пор, пока на подложку не будет нанесен слой углеродных наноструктур, имеющий толщину, равную по меньшей мере 2 микрометрам; и (vi) плазменного травления покрытия для снижения плотности пленки и создания оптических полостей в покрытии, добавления оптического спейсера к суспензии перед стадией осаждения для создания оптических полостей в покрытии или комбинации этих стадий.
Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах.

Изобретение относится к химической промышленности и нанотехнологии и может быть использовано при изготовлении композиционных полимерных материалов. По одному варианту углеродный материал (I), содержащий одностенные углеродные нанотрубки и не менее 50% углерода, приводят во взаимодействие с раствором хлорида железа с концентрацией не менее 0,1 М.

Изобретение относится к профилированию состава твердых растворов гетероэпитаксиальных структур при их росте. Способ при формировании структуры типа А2В6 на основе теллуридов элементов второй группы таблицы Менделеева включает измерения эллипсометрических параметров Ψ и Δ на одной длине волны света видимой области спектра.

Изобретение относится к области определения биомолекул с помощью эффекта гигантского комбинационного рассеяния (ГКР) и может быть использовано в медицинской диагностике для определения белков-маркеров различных патологий, в том числе с использованием технологии «лаборатория на чипе».
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта шалфея характеризуется тем, что сухой экстракт шалфея добавляют в суспензию каппа-каррагинана в этаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают гексафторбензол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, косметической и пищевой промышленности. Способ получения нанокапсул сухого экстракта подорожника характеризуется тем, что сухой экстракт подорожника добавляют в суспензию каппа-каррагинана в изогептане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 700 об/мин, далее приливают ацетонитрил, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение может быть использовано в топливных элементах, литий-ионных батареях, суперконденсаторах, электросорбционных установках очистных сооружений. Углеводород из ряда (CnH2n+n), например метан, используемый в качестве источника углерода, подают в термическую плазму предварительно смешанным с азотом в массовых соотношениях от 1:10 до 1:5 и обрабатывают в термической плазме, формируемой в плазмотроне, при пониженном давлении 300-700 Торр.
Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия. Может использоваться в условиях переменных и ударных нагрузок, таких как высоконагруженные элементы конструкций, испытывающих значительную вибрацию и/или ударные воздействия.

Изобретение относится к порошковой металлургии, в частности, к получению наноструктурного композиционного материала на основе алюминия, модифицированного фуллереном С60.

Изобретение относится к области металлургии, в частности к обработке магниевых сплавов, которое может быть использовано в производстве конструкционных или биорезорбируемых материалов.
Наверх