Способ извлечения тяжелых металлов из водных растворов

Изобретение может быть использовано в очистке воды. Очистку сточных вод от ионов тяжелых металлов осуществляют методом сорбции. В очищаемую воду добавляют сорбент на основе модифицированной гель-пленки бактериальной целлюлозы и выдерживают в течение 60 мин при комнатной температуре. Сорбент получают биологическим синтезом в статических условиях культивирования в течение 5 сут. Очистку полученного сорбента осуществляют 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывают водой до значения pH 7,0, окисляют в 0,3 мМ растворе (2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент:раствор, равном 1:500, при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения рН 5,5. Предложенный сорбент повышает степень извлечения ионов тяжелых металлов из сточных вод. 2 пр.

 

Изобретение относится к технологии очистки воды, в частности к очистке сточных вод от ионов тяжелых металлов методом сорбции с использованием сорбента на основе природного полимера - целлюлозы бактериального происхождения, и может быть использовано для очистки сточных вод от тяжелых металлов, образующихся в ходе технологических процессов, а также для разработки технологий очистки воды и водоподготовки.

Известен способ извлечения ионов тяжелых металлов из водных растворов, заключающийся в пропускании раствора через неподвижный слой набухшего гранулированного адсорбента, полученного из целлюлозосодержащего материала (ЦСМ), выбранного из древесных опилок или короткого льняного волокна фракции 0,5-1 мм. ЦСМ подвергают высушиванию до постоянной массы, обработке 2-3%-ным раствором соляной кислоты, отмывке от раствора кислоты дистиллированной водой до рН 5, отжиму до влажности 50%. Далее проводят последовательную обработку полученной массы раствором хитозана в уксусной кислоте, раствором глутарового альдегида и раствором аминоуксусной кислоты, осуществляемой при мольном соотношении ЦСМ : хитозан : глутаровый альдегид : аминоуксусная кислота, равном 1 : (0,3-0,4) : (0,2-0,3) : (0,05-0,1). Полученную смесь гранулируют (RU 2657506, МПК C02F 1/28, B01J 20/24, B01J 20/22, опубл. 14.06.2018).

Недостатком известного способа является длительность пропитки, большой расход реагентов и промывных вод.

Известен сорбент на основе клетчатки бурых водорослей. Сорбент, обладающий сорбционной активностью по отношению к солям тяжелых металлов и средне молекулярным токсикантам жидких сред, представляет собой очищенную от водорастворимых компонентов водорослевую клетчатку с размером частиц 0,05-0,2 мм, с мезопористой структурой, основными компонентами которой являются водорослевая целлюлоза и трудно гидролизуемые белки, которая получена путем сверхкритической флюидной экстракции воздушно-сухих бурых водорослей, при определенных условиях. Сорбент получают путем много стадийной очистки при температурах 50-60°С. На первой стадии водоросли подвергают сверхкритической флюидной экстракции бинарным растворителем: сверхкритический диоксид углерода - этанол (10:1). На данной стадии происходит выделение липидно-пигментного комплекса, содержащего жирные кислоты, хлорофилл и каротиноиды. Параметры экстракции: размер фракции 0,2-0,03 мм, влажность сырья 9% масс., температура 60°С, давление 300 атм, время экстракции 60 мин, расход углекислого газа 5,4 мл/мин, расход этанола 0,6 мл/мин. На второй стадии экстракции извлекается комплекс водорастворимых веществ (маннит, ламинаран, фукоидан, полифенолы, белки и аминокислоты). Проводят обработка биомассы 0,1 н. HCl при 60°С в три стадии по 60 минут, гидромодуль 1:20. На третьей стадии из остатка после кислотной экстракции проводят выделение альгиновых кислот обработкой его щелочью (1,5% NaHCO3) при 50°С в 2 стадии, каждая стадия по 60 мин, гидромодуль 1:20 (RU 2637436, МПК А61К 36/03, B01D 11/02, A61P 43/00, опубл. 04.12.2017).

Недостатком известного решения является длительность процедуры, большой расход реагентов, необходимость наличия дорогостоящего оборудования и высокие энергозатраты.

Известен способ получения сорбента для очисти сточных вод от многокомпонентных загрязнений, в котором целлюлозосодержащие отходы табачно-махорочного производства растительного происхождения в виде табачной пыли смешивают с водной суспензией бентонитовой глины, имеющей соотношение (мас. ч.): бентонитовая глина : вода, равное 3:5. Пластичную массу, имеющую соотношение компонентов (мас. %): табачная пыль - 50-70, глинистая суспензия - 30-50, гранулируют. Гранулы подвергают химической обработке в растворе серной кислоты и термической обработке при температуре 300-750°C (RU 2644880, МПК B01J 20/24, B01J 20/12, B01J 20/30, опубл. 14.02.2018).

Недостатком способа является использование высокотемпературной обработки и недостаточно высокая сорбционная емкость сорбента.

Известен способ получения сорбента из лузги подсолнечника, в котором осуществляют замачивание лузги, сушку при 80°С до постоянной массы и измельчение до фракции 0,3-0,5 мм. Замачивание лузги проводят в 0,5 М растворе гидроксида натрия при массовом соотношении лузга/раствор гидроксида натрия, равном 1:5, в поле СВЧ с удельной мощностью 1-5 Вт/см3 в течение 5-15 мин (RU 2650978, МПК B01J 20/30, опубл. 18.04.2018).

Недостатком известного способа является низкая сорбционная емкость сорбента.

Наиболее близким по технической сущности к заявленному изобретению является способ модифицирования сорбентов на основе целлюлозы для извлечения ионов тяжелых металлов из водных растворов. Осуществляют двухстадийную модификацию исходного сорбента, выбранного из хлопковой или древесной целлюлозы, короткого льняного волокна, древесных опилок или стеблей топинамбура. На первой стадии проводят обработку исходного сорбента раствором окислителя, выбранного из метаперйодата натрия, йодной кислоты или гипохлорита натрия, под действием микроволнового облучения. На второй стадии осуществляют обработку раствором 3-10% сульфаниловой кислоты. После каждой стадии обработки продукт промывают водой (RU 2640547, МПК B01J 20/30, B01J 20/24, опубл. 09.01.2018).

Недостатком известного способа является сложность процедуры модификации сорбента и большой расход необходимых реагентов.

Технический результат заключается в получении сорбента в виде окисленной бактериальной целлюлозы, обладающего способностью извлекать ионы тяжелых металлов из водных растворов.

Сущность изобретения заключается в том, что способ извлечения тяжелых металлов из водных растворов включает выдерживание в очищаемой воде в течение 60 мин при комнатной температуре сорбента на основе модифицированной гель-пленки бактериальной целлюлозы, получаемой биологическим синтезом в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывкой водой до значения pH 7,0, окислением в 0,3 мМ растворе 2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент : раствор равным 1:500 при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения pH 5,5.

В процессе химического окисления целлюлозы бактериального происхождения в биополимер вводятся функциональные карбоксильные группы, которые способны связывать ионы тяжелых металлов по механизму ионного обмена. Бактериальная целлюлоза обладает высокой удельной площадью поверхности, что даже при невысокой степени окисления позволяет добиться большой концентрации функциональных групп на единицу массы сорбента. Для получения сорбента используют бактериальную целлюлозу, полученную культивированием продуцента Gluconacetobacter sucrofermentans H-110 на соответствующей среде (RU 2536973, МПК C12N 1/20, C12P 19/04, C12R 1/01, опубл. 27.12.2014; RU 2536257, МПК C12N 1/20, C12R 1/01, опубл. 20.12.2014). Культивирование осуществляют в стационарных условиях культивирования при температуре 28°С в течение 5 суток в пластиковых кюветах объемом 7 л заполненных на 1/7 объема. Полученную гель-пленку бактериальной целлюлозы очищают последовательной обработкой 0,2 н. раствором гидроксида натрия при температуре 80°C в течение 120 мин для удаления клеток и компонентов культуральной среды и 0,5%-ным водным раствором уксусной кислоты при температуре 80°C в течение 60 мин с тщательной отмывкой дистиллированной водой до значения pH 5,5 после каждого этапа. Окисление бактериальной целлюлозы проводят в водном растворе с гидромодулем 1:500, содержащем 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификацию сорбента проводят в течение 60 мин при температуре 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции гель-пленку бактериальной целлюлозы промывают водой до достижения значения pH 5,5. В качестве модельного элемента тяжелого металла был выбран никель (II), который использовался в виде сульфата никеля.

Пример реализации заявленного способа.

Пример 1. Бактериальная целлюлоза была получена в ходе культивирования продуцента в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным водным раствором гидроксида натрия в течение 120 мин и последующей промывкой водой до значения рН 7,0. 0,1 г бактериальной целлюлозы заливают 50 мл раствора 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификация сорбента проводилась в течение 60 мин при 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции окисления гель-пленку бактериальной целлюлозы промывают дистиллированной водой до достижения значения pH 5,5 для удаления непрореагировавших компонентов реакционной смеси. Полученный в виде гель-пленки сорбент помещают в емкость объемом 250 мл и заливают 100 мл раствора сульфата никеля имеющем значение pH 5,5 и содержащем 0,038 ммоль ионов никеля. Через 60 мин в растворе определяют количество ионов никеля, которое составляет 0,02 ммоль ионов никеля (степень извлечения 47,36 %).

Пример 2. Бактериальная целлюлоза была получена в ходе культивирования продуцента в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным водным раствором гидроксида натрия в течение 120 мин и последующей промывкой водой до значения рН 7,0. 0,1 г бактериальной целлюлозы заливают 50 мл раствора 2,2,6,6-тетраметилпиперидин-1-ил)оксила в концентрации 0,3 мМ, бромида натрия в концентрации 28 мМ и 5 мМ гипохлорита натрия. Модификацию сорбента проводят в течение 60 мин при температуре 25°С с поддержанием значения pH равным 10,0, которое корректировалось добавлением 0,05 N гидроксида натрия. По окончании реакции окисления гель-пленку бактериальной целлюлозы промывают водой до достижения значения pH 5,5 для удаления непрореагировавших компонентов реакционной смеси. Полученный в виде гель-пленки сорбент помещают в емкость объемом 250 мл и заливают 100 мл раствора сульфата никеля имеющем значение pH 5,5 и содержащем 0,023 ммоль ионов никеля. Через 60 мин в растворе определяют количество ионов никеля, которое составляет 0,008 ммоль ионов никеля (степень извлечения 64,2%).

По сравнению с известным решением заявленное изобретение позволяет получить сорбент в виде окисленной бактериальной целлюлозы, обладающего способностью извлекать ионы тяжелых металлов из водных растворов.

Способ извлечения тяжелых металлов из водных растворов, включающий добавление и выдерживание в очищаемой воде в течение 60 мин при комнатной температуре сорбента на основе модифицированной гель-пленки бактериальной целлюлозы, получаемой биологическим синтезом в статических условиях культивирования в течение 5 сут с последующей очисткой 0,5%-ным раствором гидроксида натрия в течение 120 мин, промывкой водой до значения pH 7,0, окислением в 0,3 мМ растворе (2,2,6,6-тетраметилпиперидин-1-ил)оксила, 28 мМ бромида натрия и 5 мМ гипохлорита натрия в течение 60 мин при температуре 25°С при модуле сорбент:раствор, равном 1:500, при pH 10,0 с последующей промывкой водой после окончания реакции окисления до значения pH 5,5.



 

Похожие патенты:

Изобретение относится к химической переработке целлюлозы, в частности к способам получения нанокристаллической целлюлозы в виде гидрозоля. Способ включает каталитический сольволиз микрокристаллической целлюлозы, выделение и очистку целевого продукта.

Группа изобретений относится к области химической переработки целлюлозы, а именно к созданию новых целлюлозных наноразмерных материалов, продуктов на их основе и способам их получения.

Изобретение относится к области получения микрокристаллической целлюлозы - тонкодисперсного целлюлозного материала - из различных видов лигноцеллюлозных материалов, получаемых из древесных полуфабрикатов в процессе их переработки на целлюлозно-бумажных предприятиях, товарной целлюлозы, полученной из растительного, в том числе и древесного сырья, однолетних и многолетних недревесных культур, включая хлопок.

Изобретение относится к химической переработке целлюлозы, в частности к способам получения ультрадисперсных частиц и гидрозолей нанокристаллической целлюлозы, и может быть использовано при производстве органических наночастиц с упорядоченным строением, биосовместимых материалов на их основе, реологических модификаторов и загустителей, наполнителей пластиков, биоразлагаемых полимерных материалов и композитов, стабилизаторов красок, волокон, эмульсий, в фармацевтической, пищевой, парфюмерной и в других областях промышленности.

Изобретение относится к области химии лигноцеллюлозы и ее модифицирования, а именно к порошковым неоргано-лигноцеллюлозным гибридам и порошковым лигноцеллюлозным материалам.

Изобретение относится к растворимым в воде композициям водорастворимых простых эфиров полисахаридов (далее по тексту полимер), которые используются для получения однородных, не содержащих комков полимера растворов путем непосредственного введения композиции в системы на водной основе.

Изобретение относится к способам получения синтетической целлюлозы путем полимеризации водного раствора глюкозы. Изобретение может быть использовано для получения целлюлозы высокой чистоты, и данный способ в перспективе может лечь в основу новой промышленной технологии получения синтетической целлюлозы без использования природной древесины и без использования натурального хлопка.

Целлюлозное волокно с повышенным содержанием карбоксильных групп, приводящим к улучшенным антимикробным свойствам, характеристикам стойкости к пожелтению и абсорбционным свойствам.

Изобретение относится к способу сульфатирования и фосфорилирования целлюлозного субстрата для придания ему антивоспламеняющихся свойств, включающему следующие стадии: i) обеспечение целлюлозного субстрата; ii) приготовление раствора для сульфатирования и фосфорилирования, предпочтительно в условиях нагревания, причем раствор для сульфатирования и фосфорилирования содержит воду, сульфамат аммония, мочевину и по меньшей мере одно соединение формулы (I) где R представляет собой линейную или разветвленную, замещенную или незамещенную C1-10, предпочтительно C1-5 алкильную группу; группу N(R1); группу R2N(R3)R4; R1 представляет собой H, линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3 алкильную группу; R2 и R4 независимо представляют собой линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3 алкильную группу; R3 представляет собой линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3 алкильную группу; группу R5N(R6)R7; R5 и R7 независимо представляют собой линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3 алкильную группу; R6 представляет собой линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3 алкильную группу; группу R8N(R9)R10; R8, R9 и R10 независимо представляют собой линейную или разветвленную, замещенную или незамещенную C1-5, предпочтительно C1-3алкильную группу; при условии, что количество групп -PO(OH)2 в общей формуле (I) составляет не более 5; iii) погружение целлюлозного субстрата в раствор для сульфатирования и фосфорилирования; iv) экстрагирование целлюлозного субстрата из раствора для сульфатирования и фосфорилирования; v) выдерживание целлюлозного субстрата при температуре, составляющей от 110 до 175°C, в течение периода времени, составляющего от 1 мин до 3 ч, с получением в конце сульфатированного и фосфорилированного целлюлозного субстрата, обладающего антивоспламеняющимися свойствами.

Изобретение относится к полимерному гидрогелю, включающему карбоксиметилцеллюлозу и лимонную кислоту, причем указанная лимонная кислота участвует в образовании поперечных связей в карбоксиметилцеллюлозе, при этом указанный полимерный гидрогель имеет коэффициент набухания от 50 до 300.

Изобретение может быть использовано для очистки природных вод. Способ очистки подземных вод для сельскохозяйственного использования включает обработку воды окислителем, фильтрацию через загрузку, дезинфекцию воды ультрафиолетовым излучением и подачу потребителю.

Изобретение относится к переработке отходов целлюлозно-бумажной промышленности в виде коллоидных осадков шлам-лигнина путем удаления коллоидно-связанной воды. Способ включает естественное вымораживание осадка шлам-лигнина в картах-накопителях в холодное время года с последующим оттаиванием, сопровождающийся разрушением его пастообразной коллоидной структуры и переходом в твердое гранулированное состояние.

Изобретение относится к устойчивым к хлору фильтрационным мембранам, содержащим N-алкилзамещенные производные полианилина, для применения, например, для очистки воды и к способам их получения и применения.

Изобретение предназначено для очистки жидкости. Картридж для обработки жидкости содержит корпус, по меньшей мере часть которого выполнена с возможностью вставки в посадочное гнездо для картриджа через горловину посадочного гнезда.

Изобретение может быть использовано в водоочистке. Способ фильтрации морской воды на борту судна с помощью устройства (2) фильтрации, содержащего цилиндрический фильтрующий элемент (6), расположенный в резервуаре (5), и устройство (11) очистки, включает этапы: a) закачивания морской воды в устройство (2) фильтрации; b) направления морской воды с входным давлением P_вх в устройство (2) фильтрации с обеспечением выходного давления P_вых в виде фильтрованной морской воды или фильтрата; c) осуществления отведения фазы концентрата или концентрата, удаленного с фильтрующего элемента (6) с помощью устройства (11) очистки, с давлением концентрата P_конц; d) измерения входного давления P_вх, выходного давления P_вых и давления концентрата P_конц предпочтительно с помощью датчиков (22, 23, 24) и передачи их в устройство (21) управления; e) распознания изменения эффективности фильтрации фильтрующего элемента (6) путем определения изменения разности давлений загрязнения ∆PF = P_вх - P_вых между входным давлением P_вх и выходным давлением P_вых и регулирования разности давлений отсасывания ∆PK = P_вых - P_конц, определенную как разность между выходным давлением и давлением концентрата, в зависимости от разности давлений загрязнения ∆PF = P_вх - P_вых.

Изобретение может быть использовано в водоочистке. Автоматическая станция для очистки воды включает камеру-реактор 9 с датчиками нижнего 8 и верхнего 7 уровня воды, емкость для очищенной воды 17, систему подачи исходной воды, включающую трубку 6, систему подачи озона, включающую генератор озона 1 с подключенным к нему осушителем воздуха 23, распылитель 12, расположенный в камере-реакторе 9, фильтр-деструктуризатор озона 10, закрепленный в верхней части камеры-реактора 9, систему подачи очищенной воды, фильтры тонкой очистки воды 19 и деструктуризатор 20, расположенные в трубопроводе системы подачи очищенной воды, центральный блок управления, функционально подключенный к генератору озона 1 и выполненный с возможностью управления средством контроля подачи исходной воды и с возможностью ручной регулировки времени генерирования озона, насосную станцию 18, фильтр 13, расположенный на дне камеры-реактора 9, систему промывки камеры-реактора 9 с трубопроводом подачи очищенной воды в камеру-реактор 9, таймер начала и окончания промывки.
Изобретение может быть использовано для очистки сточных вод целлюлозно-бумажной промышленности. Удаление гуминовых веществ, содержащих лигнин и другие соединения лигнинового типа и продукты их распада, из водной щелочной сточной воды от отбеливания химической пульпы осуществляют осаждением с использованием высококатионного крахмала.
Изобретение относится к области пищевой промышленности, в частности к способу получения питьевой воды, которая может использоваться как продукт повышенной биологической ценности, выступая в качестве дополнительного источника кремния, янтарной кислоты и калия.

Изобретение относится к технологии очистки воды, в частности к очистке сточных вод от ионов меди сорбцией. Способ очистки сточных вод от ионов меди включает обработку сорбентом, в качестве которого используют доменный гранулированный шлак, предварительно обработанный 10% раствором кремнезоля, а очистку осуществляют фильтрацией через сорбент толщиной слоя 0,04-0,05 м и размером зерен 2,5-5 мм.

Изобретение относится к области очистки и обеззараживания хозяйственно-бытовых сточных вод и может быть использовано для очистки сточных вод малых населенных пунктов, коттеджных поселков, вахтовых поселков, образовательных и лечебных учреждений, в том числе инфекционных и туберкулезных больниц.

Изобретение относится к фильтрующим материалам для жидкости. Предложен диатомит, подвергнутый кальцинированию под флюсом на основе карбоната натрия.
Наверх