Способ поиска объектов на цифровых изображениях

Изобретение относится к автоматике и вычислительной технике и может быть использовано при построении систем технического зрения различного назначения, а также для анализа и синтеза фильтров при обработке цифровых изображений. Техническим результатом является повышение вероятности правильного обнаружения и снижение занятости вычислительного ресурса и ресурса памяти. Способ поиска и распознавания объектов на цифровых изображениях основан на измерении энергетических спектров входного изображения и эталона, адаптивной пространственной фильтрации и пороговой обработке, при котором формируют матрицы из коэффициентов разложения энергетических спектров входного и эталонного изображений в двумерные ряды Фурье по косинусам, по полученным матрицам синтезируют дискретный двумерный фильтр и производят адаптивную пространственную дискретную фильтрацию входного изображения, сравнивают результат фильтрации с порогом, согласно изобретению входное изображение и изображение эталона предварительно обрабатывают детекторным полем, а апертуру фильтра согласуют с размерами эталона. 1 ил.

 

Изобретение относится к автоматике и вычислительной технике, и может быть использовано при построении систем технического зрения различного назначения, а также для анализа и синтеза фильтров при обработке цифровых изображений.

Известен способ поиска и распознавания объектов на цифровом изображении, основанный на пошаговом совмещении нормализованных изображений распознаваемых объектов, центрированных и вписанных в одинаковых размеров ячейки таблицы распознаваемых объектов, и изображений шаблонов, центрированных и вписанных в аналогичные ячейки таблицы шаблонов (см. патент RU 2234127 С2, 05.06.2002 «Способ компьютерного распознавания объектов»). В данном способе является обязательным наличие процедуры предварительной нормализации (приведение объекта на изображении к стандартному виду - изменение масштаба, поворот в требуемое положение и пр.), центрирования, что ведет к увеличению времени поиска и, соответственно, распознавания. И только потом, построчно снизу вверх или сбоку, поочередно совмещают строки или столбцы таблицы объектов с таблицей шаблонов для окончательного распознавания.

Также известны способы поиска и распознавания объектов на цифровом изображении, основанные на выделении контуров одного цвета на изображении с их последующим представлением в виде коэффициентов преобразования Фурье (см., например, US Patent 6563959 B1, 13.05.2003, «Perceptual similarity image retrieval method») и на выделении замкнутого контура, максимально совпадающего с границами объекта с последующим поочередным наложением шаблонов, хранящихся в памяти компьютера (см. патент RU 2250499 CI, 17.11.2003 «Способ компьютерного распознавания объектов»), где в случае совпадения контуров заранее известных шаблонов с обнаруженными объектами последние фиксируются как распознанные. В первом случае степень схожести двух объектов на разных изображениях определяется по ряду коэффициентов, но этот способ очень чувствителен к качеству входного изображения и затрачивает много времени при его обработке, если изображение объекта представляется на сложном неоднородном фоне. Недостатком второго способа является низкая вероятность правильного обнаружения и распознавания, если изображение границ объекта размыты и имеют малый контраст, т.е. имеет место влияние характеристик фона на характеристики объекта, и таким образом бывает сложно выделить границы только объекта без составляющих фона, кроме того, при повороте распознаваемого объекта относительно идентичного шаблона, может быть принято решение о нераспознавании.

В качестве прототипа выбран способ поиска и распознавания объектов на цифровых изображениях (Патент РФ RU 2458397 С1. Способ поиска и распознавания объектов на цифровых изображениях, заявка №2011111070/08, 23.03.2011), основанный на измерении энергетических спектров входного изображения и эталона, адаптивной пространственной фильтрации и пороговой обработке, при котором составляют матрицы из коэффициентов разложения энергетических спектров входного и эталонного изображений в двумерные ряды Фурье по косинусам, по полученным матрицам синтезируют дискретный двумерный фильтр, производят адаптивную пространственную дискретную фильтрацию входного изображения и сравнивают результат фильтрации с порогом.

Недостатком прототипа является низкая вероятность правильного обнаружения, обусловленная неоднозначностью выбора апертуры фильтра, а также требование значительных вычислительных ресурсов и ресурса памяти при обработке изображений высокого разрешения.

Техническим результатом предлагаемого способа является повышение вероятности правильного обнаружения и снижение занятости вычислительного ресурса и ресурса памяти.

Указанный технический результат достигается тем, что в способе поиска и распознавания объектов на цифровых изображениях, основанный на измерении энергетических спектров входного изображения и эталона, адаптивной пространственной фильтрации и пороговой обработке, при котором формируют матрицы из коэффициентов разложения энергетических спектров входного и эталонного изображений в двумерные ряды Фурье по косинусам, по полученным матрицам синтезируют дискретный двумерный фильтр и производят адаптивную пространственную дискретную фильтрацию входного изображения, сравнивают результат фильтрации с порогом, согласно изобретению, входное изображение и изображение эталона предварительно обрабатывают детекторным полем, а апертуру фильтра согласуют с размерами эталона.

Сущность предлагаемого способа заключается в том, что входное изображение и изображение эталона предварительно обрабатывают детекторным полем, а апертуру фильтра согласуют с размерами эталона.

Обработка детекторным полем уменьшает размерность входного изображения и изображения эталона, что приводит к существенному уменьшению апертуры синтезируемого дискретного двумерного фильтра и одновременному сокращению времени обработки (снижению занятости вычислительного ресурса и ресурса памяти).

При адаптивной фильтрации апертура фильтра обычно не определяется, а адаптивность заключается в том, что импульсная характеристика синтезируется на основе измеренных коэффициентов разложения энергетических спектров входного изображения в двумерный ряд Фурье по косинусам. Количество таких коэффициентов заранее не устанавливается, что приводит к снижению эффективности обнаружения, и, как следствие, к увеличению вероятности ложных тревог, а во многих случаях - к уменьшению вероятности правильного обнаружения. В предлагаемом способе количество коэффициентов разложения энергетических спектров входного изображения в двумерные ряды Фурье по косинусам определяется размерами изображения эталона. При этом достигается максимальная эффективность обработки и потенциально высокая вероятность правильного обнаружения при минимальной вероятности ложных тревог.

В предложенном способе поиска объектов на цифровых изображениях, в отличие от прототипа:

выполняют предварительную обработку входного изображения и изображения эталона детекторным полем, размеры детекторов которого согласованы с размерами эталона. Обработка изображения детекторным полем как показано в [Пономарев, А.В. Детекторные поля / Пономарев А.В., Богословский А.В., Жигулина И.В. М.: Радиотехника, №7, 2018 г. С. 129-136. DOI 10.18127/j00338486-201807-23], приводит к формированию контурного изображения уменьшенной размерности;

апертуру дискретного двумерного пространственного фильтра определяют по размерам эталона [см. Богословский, А.В. Обработка многомерных сигналов. Кн. 1. Линейная многомерная дискретная обработка сигналов. Методы анализа и синтеза: монография / А.В. Богословский, Е.А. Богословский, И.В. Жигулина, В.А. Яковлев М.: Радиотехника, 2013. 168 с.].

Способ может быть реализован, например, с помощью устройства, структурная схема которого представлена на фигуре. На структурной схеме обозначены:

1 - датчик изображения;

2 - формирователь детекторного поля;

3 - блок измерения компонентов энергетического спектра;

4 - вычислитель;

5 - дискретный двумерный фильтр;

6 - банк изображений эталонов;

7 - формирователь детекторного поля;

8 - блок измерения компонентов энергетического спектра;

9 - пороговое устройство;

10 - устройство отображения.

Формирователи детекторного поля 2 и 7 предназначены для получения контурного изображения уменьшенной размерности и могут быть реализованы на сумматорах и микроконтроллерах.

Работа устройства аналогична работе устройства прототипа. Отличие заключается в том, что после формирования входного изображения с помощью датчика изображения 1:

видеосигнал изображения поступает на первый вход формирователя детекторного поля 2, где происходит его обработка детекторным полем, размеры детекторов которого согласованы с размерами эталона, поступающими со второго выхода банка изображений эталонов 6, в результате чего формируется контурное изображение уменьшенной размерности;

видеосигнал контурного изображения уменьшенной размерности поступает на первый вход блока измерения компонентов энергетического спектра 3, на второй вход которого поступают данные о размере эталона. В блоке 3 измеряются компоненты энергетического спектра видеосигнала входного изображения, количество которых определяется размером эталона;

с первого выхода банка изображений эталонов 6 на вход формирователя детекторного поля 7 поступает видеосигнал изображения эталона, где происходит его обработка детекторным полем;

с выхода формирователя детекторного поля 7 контурное изображение эталона поступает на вход блока измерения компонентов энергетического спектра 8, где измеряются компоненты энергетического спектра видеосигнала контурного изображения эталона;

с выхода блока измерения компонентов энергетического спектра 8 на второй вход вычислителя 4 поступают компоненты энергетического спектра видеосигнала контурного изображения эталона, с выхода блока измерения компонентов энергетического спектра 3 на первый вход вычислителя 4 поступают компоненты энергетического спектра видеосигнала контурного изображения уменьшенной размерности. В вычислителе 4 определяются отсчеты импульсной характеристики дискретного пространственного фильтра.

с выхода вычислителя 4 на второй вход дискретного двумерного фильтра 5 поступают отсчеты импульсной характеристики дискретного пространственного фильтра, где производится фильтрация контурного изображения уменьшенной размерности, поступившего с выхода формирователя детекторного поля 2 на первый вход дискретного двумерного фильтра 5.

Применение предлагаемого способа поиска объектов на цифровых изображениях позволит снизить объем обрабатываемых данных на несколько порядков и повысить вероятность правильного обнаружения объектов на цифровых изображениях, обладающих сложным неоднородным фоном.

Проведенный заявителями анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах изобретения, позволил установить, что заявители не обнаружили аналогов, характеризующихся признаками, тождественными всем существенным признакам изобретения. Следовательно, заявленное изобретение «Способ поиска объектов на цифровых изображениях» соответствует критерию «новизна».

Способ поиска объектов на цифровых изображениях, основанный на измерении энергетических спектров входного изображения и эталона, адаптивной пространственной фильтрации и пороговой обработке, при котором формируют матрицы из коэффициентов разложения энергетических спектров входного и эталонного изображений в двумерные ряды Фурье по косинусам, по полученным матрицам синтезируют дискретный двумерный фильтр и производят адаптивную пространственную дискретную фильтрацию входного изображения, сравнивают результат фильтрации с порогом, отличающийся тем, что входное изображение и изображение эталона предварительно обрабатывают детекторным полем, а апертуру фильтра согласуют с размерами эталона.



 

Похожие патенты:

Изобретение относится к вычислительной технике. Технический результат заключается в обеспечении возможности обнаружения реального объекта, независимо от формы объекта или наличия маркера.

Изобретение относится к способам цифровой обработки изображений и может быть использовано в интеллектуальных системах классификации рентгеновских снимков. Технический результат заключается в увеличении точности распознавания областей интереса при анализе графический информации.

Изобретение относится к области обработки цифровых изображений. Техническим результатом изобретения является создание более простого и дешевого способа автоматической настройки системы разнесенных в пространстве телекамер для формирования панорамного изображения, за счет отсутствия дополнительных устройств и выполнения пересчета параметров сшивки входных изображений по объектам, расположенным в области перекрытия входных изображений.

Настоящее изобретение относится к демонстрации аннотации на контрольном предметном стекле. Техническим результатом заявленного изобретения является копирование аннотации, создаваемой на эталонном предметном стекле, на контрольное предметное стекло.

Изобретение относится к области оптической проверки. Устройство для оптической проверки поверхности содержит: по меньшей мере два источника излучения с отличающимися положением и направлением испускания; по меньшей мере одно из апертуры и поглощающего излучение короба, выполненные с возможностью блокировки излучения, кроме излучения, рассеянного на поверхности; по меньшей мере одну камеру; и процессор, содержащий обученный классификатор на основе искусственного интеллекта и выполненный с возможностью: выполнять предобработку изображений, где предобработка включает в себя по меньшей мере удаление фона, обнаруживать дефект на по меньшей мере одной поверхности, где дефект обнаружен на по меньшей мере одной поверхности, если на по меньшей мере одном изображении из упомянутого набора изображений обнаружено отображение рассеянного излучения; определять тип дефекта, и является ли дефект ложным или истинным, посредством оценки обнаруженного дефекта обученным классификатором на основе искусственного интеллекта.

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении возможности предотвращения столкновений между передвижной рабочей платформой и транспортным средством для перевозки людей.

Изобретение относится к системам видеосопровождения объектов, построенных на телевизионном (ТВ) или тепловизионном (ТПВ) принципе. Техническим результатом является предотвращение срывов сопровождения, вызываемых ограниченными допустимыми значениями относительной скорости и ускорения объектов слежения Предложен способ видеосопровождения объекта, при котором в датчике изображения используется кратно повышенная частота кадров (полей) и вводится операция преобразования видеосигнала повышенной частоты кадров (полей) в видеосигнал со стандартной частотой кадров (полей) 50 Гц путем прореживания последовательности кадров от датчика изображения, запоминания сохраняемых кадров и кратного понижения скорости считывания цифрового видеосигнала сохраняемых кадров видеопоследовательности для сопряжения с параметрами видеомонитора со стандартной частотой кадров (полей).

Изобретение относится к способу и устройству обработки оптической информации. Техническим результатом является повышение точности при обработке информации.

Изобретение относится к способу и устройству формирования цветного QR-кода по изображениям лиц. Технический результат заключается в повышении репрезентативности представления лицевой информации в цветных QR-кодах.

Изобретение относится к технологиям обработки изображений и может быть использовано в системах технического зрения. Технический результат заключается в снижении чувствительности к шумам за счет уменьшения размерности формируемого изображения.

Изобретение относится к области вычислительной техники для детектирования, поиска, распознания и фиксации лица человека, и может использоваться для розыска лиц, например, злоумышленников в местах массового скопления людей.

Изобретение относится к вычислительной технике. Технический результат − повышение производительности процесса оцифровки культурных ценностей и коллекций, материалов архивов и библиотек, различных документов и изображений, а именно поточных линий по оцифровке при имеющихся тех же индивидуальных производительностях каждого из составляющих оцифровывающий комплекс устройств.

Изобретение относится к области оптического приборостроения и может быть использовано в астрономии и оптической локации для получения неискаженных атмосферой изображений малоразмерных космических объектов.

Изобретение относится к области проверки ценных документов. .

Изобретение относится к автоматике и вычислительной технике и может быть использовано при построении систем технического зрения различного назначения, а также для анализа и синтеза фильтров при обработке цифровых изображений.

Изобретение относится к области устройств для формирования изображений. .

Изобретение относится к области вычислительной техники и может быть использовано для биометрической идентификации личности. .

Изобретение относится к способам контроля целостности охраняемых объектов, а более конкретно к способам опечатывания с использованием связующего тела, фиксируемого на охраняемом объекте.

Изобретение относится к области контроля целостности охраняемых объектов и касается способа опечатывания охраняемого объекта с использованием связующего тела, заключающегося в фиксировании связующего тела на охраняемом объекте, пропускании связующего тела через деформируемый корпус пломбы и фиксировании связующего тела в корпусе пломбиром с одновременным формированием на деформируемом участке корпуса идентификационного элемента.

Изобретение относится к области скобяных изделий и касается оптической пломбы, содержащей чашку с утопленным в нее вкладышем из светопрозрачного материала, образующие корпус, внутри которого зафиксированы концы связующего тела, связанного с охраняемым объектом, и, по меньшей мере, один информационный элемент, причем в корпусе выполнены элементы для единообразной установки автоматизированного устройства считывания оптического образа информационного элемента.

Изобретение относится к области вычислительной техники для цифровой обработки сигналов. Технический результат заключается в повышении быстродействия устройства быстрого преобразования Фурье (БПФ).
Наверх