Универсальный программируемый arc-фильтр

Изобретение относится к средствам перестраиваемых ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в повышении стабильности реализуемой добротности. По сравнению с прототипом универсальный программируемый ARC-фильтр отличается тем, что выход третьего (8) дифференциального операционного усилителя подключен к аналоговому входу (16) второй (12) матрицы сопротивлений R-2R, между выходом пятого (10) дифференциального операционного усилителя и неинвертирующим входом третьего (8) дифференциального операционного усилителя включен второй (25) конденсатор, выход четвертого (9) дифференциального операционного усилителя связан с неинвертирующим входом третьего (8) дифференциального операционного усилителя через второй (26) резистор, инвертирующий вход пятого (10) дифференциального операционного усилителя соединен со вторым (2) входом устройства через дополнительный резистор (34), и соединен с общей шиной источников питания через девятый (33) резистор, а также связан с выходом пятого (10) дифференциального операционного усилителя через четвертый (28) резистор, инвертирующий вход третьего (8) дифференциального операционного усилителя соединен с инвертирующим входом пятого (10) дифференциального операционного усилителя и через третий (27) резистор подключен к третьему (5) выходу устройства и выходу третьего (8) дифференциального операционного усилителя, первый (1) вход устройства соединен со вторым (4) выходом устройства через последовательно соединенные восьмой (32) и шестой (30) резисторы, общий узел которых связан с инвертирующим входом третьего (8) дифференциального операционного усилителя через пятый (29) резистор и подключен к общей шине источников питания через седьмой (31) резистор. 4 ил.

 

МПК: H03H 11/12,

H03H 7/10

УНИВЕРСАЛЬНЫЙ ПРОГРАММИРУЕМЫЙ ARC-ФИЛЬТР

Изобретение относится к области радиотехники, а также измерительной техники, и может использоваться, например, в качестве перестраиваемых ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Универсальные программируемые активные RC-фильтры (ARCФ), обеспечивающие на разных выходах формирование амплитудно-частотных характеристик фильтра нижних частот (ФНЧ), фильтра высоких частот (ФВЧ), полосового фильтра (ПФ), широко используются в современной электронике [1-15] и оказывают существенное влияние на качественные показатели многих аналого-цифровых систем связи и автоматического управления. При этом в качестве элементов программирования и перестройки ARCФ применяются матрицы R-2R [1], управляемые кодом. Достаточно важным направлением совершенствования программируемых ARCФ является подстройка и перестройка их основных параметров, в т.ч. за счет цифровой коммутации пассивных элементов и применения микросхем цифровых потенциометров [9-15].

Ближайшим прототипом заявляемого устройства является схема универсального программируемого ARC-фильтра, представленная в патенте RU 2019904, 1994 г. Он содержит (фиг. 1) первый 1 и второй 2 входы, а также первый 3, второй 4 и третий 5 выходы, первый 6, второй 7, третий 8, четвертый 9 и пятый 10 дифференциальные операционные усилители, первую 11 и вторую 12 матрицы сопротивлений R-2R, каждая из которых имеет цифровое управление по многоканальным логическим входам 13 и 14 соответственно, аналоговые входы 15 и 16 первой 11 и второй 12 матриц сопротивлений R-2R, входы 17 и 18 для подключения обратных связей первой 11 и второй 12 матриц сопротивлений R-2R, аналоговые выходы 19 и 20 первой 11 и второй 12 матриц сопротивлений R-2R соответственно, а также вспомогательные аналоговые выходы 21 и 22 первой 11 и второй 12 матриц сопротивлений R-2R, согласованные с общей шиной источников питания, первый 23 конденсатор, включенный между выходом первого 6 дифференциального операционного усилителя и его инвертирующим входом, первый 24 резистор, включенный между выходом второго 7 дифференциального операционного усилителя, соединенным со входом 18 для подключения обратной связи второй 12 матрицы сопротивлений R-2R и инвертирующим входом первого 6 дифференциального операционного усилителя, аналоговый выход 20 второй 12 матрицы сопротивлений R-2R соединен с инвертирующим входом второго 7 дифференциального операционного усилителя и неинвертирующим входом первого 6 дифференциального операционного усилителя, неинвертирующий вход второго 7 дифференциального операционного усилителя подключен к общей шине источников питания, аналоговый выход 19 первой 11 матрицы сопротивления R-2R связан с инвертирующим входом четвертого 9 дифференциального операционного усилителя, выход которого подключен ко входу 17 для подключения обратной связи первой 11 матрицы сопротивления R-2R, выход пятого 10 дифференциального операционного усилителя связан с первым 3 выходом устройства, выход первого 6 дифференциального операционного усилителя связан со вторым 4 выходом устройства, второй 25 конденсатор, второй 26, третий 27, четвертый 28, пятый 29, шестой 30, седьмой 31, восьмой 32, девятый 33 резисторы.

Основной существенный недостаток ARCФ-прототипа фиг. 1 состоит в том, что он не позволяет реализовать высокую стабильность добротности фильтра на высоких частотах, так как компенсация влияния частотных свойств операционных усилителей выполняется с помощью используемого в схеме фиг. 1 третьего конденсатора (элемент под № 35).

Основная задача предполагаемого изобретения состоит в повышении стабильности реализуемой добротности.

Поставленная задача достигается тем, что в универсальном программируемом ARC-фильтре фиг. 1, содержащем первый 1 и второй 2 входы, а также первый 3, второй 4 и третий 5 выходы, первый 6, второй 7, третий 8, четвертый 9 и пятый 10 дифференциальные операционные усилители, первую 11 и вторую 12 матрицы сопротивлений R-2R, каждая из которых имеет цифровое управление по многоканальным логическим входам 13 и 14 соответственно, аналоговые входы 15 и 16 первой 11 и второй 12 матриц сопротивлений R-2R, входы 17 и 18 для подключения обратных связей первой 11 и второй 12 матриц сопротивлений R-2R, аналоговые выходы 19 и 20 первой 11 и второй 12 матриц сопротивлений R-2R соответственно, а также вспомогательные аналоговые выходы 21 и 22 первой 11 и второй 12 матриц сопротивлений R-2R, согласованные с общей шиной источников питания, первый 23 конденсатор, включенный между выходом первого 6 дифференциального операционного усилителя и его инвертирующим входом, первый 24 резистор, включенный между выходом второго 7 дифференциального операционного усилителя, соединенным со входом 18 для подключения обратной связи второй 12 матрицы сопротивлений R-2R и инвертирующим входом первого 6 дифференциального операционного усилителя, аналоговый выход 20 второй 12 матрицы сопротивлений R-2R соединен с инвертирующим входом второго 7 дифференциального операционного усилителя и неинвертирующим входом первого 6 дифференциального операционного усилителя, неинвертирующий вход второго 7 дифференциального операционного усилителя подключен к общей шине источников питания, аналоговый выход 19 первой 11 матрицы сопротивления R-2R связан с инвертирующим входом четвертого 9 дифференциального операционного усилителя, выход которого подключен ко входу 17 для подключения обратной связи первой 11 матрицы сопротивления R-2R, выход пятого 10 дифференциального операционного усилителя связан с первым 3 выходом устройства, выход первого 6 дифференциального операционного усилителя связан со вторым 4 выходом устройства, второй 25 конденсатор, второй 26, третий 27, четвертый 28, пятый 29, шестой 30, седьмой 31, восьмой 32, девятый 33 резисторы, предусмотрены новые элементы и связи – второй 4 выход устройства подключен к аналоговому входу 15 первой 11 матрицы сопротивления R-2R, третий 5 выход устройства соединен с выходом третьего 8 дифференциального операционного усилителя, неинвертирующий вход четвертого 9 дифференциального операционного усилителя соединен с инвертирующим входом второго 7 дифференциального операционного усилителя и неинвертирующим входом пятого 10 дифференциального операционного усилителя, выход третьего 8 дифференциального операционного усилителя подключен к аналоговому входу 16 второй 12 матрицы сопротивлений R-2R, между выходом пятого 10 дифференциального операционного усилителя и неинвертирующим входом третьего 8 дифференциального операционного усилителя включен второй 25 конденсатор, выход четвертого 9 дифференциального операционного усилителя связан с неинвертирующим входом третьего 8 дифференциального операционного усилителя через второй 26 резистор, инвертирующий вход пятого 10 дифференциального операционного усилителя соединен со вторым 2 входом устройства через дополнительный резистор 34, и соединен с общей шиной источников питания через девятый 33 резистор, а также связан с выходом пятого 10 дифференциального операционного усилителя через четвертый 28 резистор, инвертирующий вход третьего 8 дифференциального операционного усилителя соединен с инвертирующим входом пятого 10 дифференциального операционного усилителя и через третий 27 резистор подключен к третьему 5 выходу устройства и выходу третьего 8 дифференциального операционного усилителя, первый 1 вход устройства соединен со вторым 4 выходом устройства через последовательно соединенные восьмой 32 и шестой 30 резисторы, общий узел которых связан с инвертирующим входом третьего 8 дифференциального операционного усилителя через пятый 29 резистор и подключен к общей шине источников питания через седьмой 31 резистор.

На чертеже фиг. 1 показана схема программируемого ARCФ-прототипа, а на чертеже фиг. 2 – схема заявляемого программируемого ARCФ в соответствии с формулой изобретения.

На чертеже фиг. 3 приведена схема заявляемого ARCФ фиг. 2 в среде компьютерного моделирования Micro-Cap.

На чертеже фиг. 4 представлены амплитудно-частотные характеристики программируемого ARCФ фиг. 2 для выходов ПФ, ФНЧ и ФВЧ.

Универсальный программируемый ARC-фильтр фиг. 2 содержит первый 1 и второй 2 входы, а также первый 3, второй 4 и третий 5 выходы, первый 6, второй 7, третий 8, четвертый 9 и пятый 10 дифференциальные операционные усилители, первую 11 и вторую 12 матрицы сопротивлений R-2R, каждая из которых имеет цифровое управление по многоканальным логическим входам 13 и 14 соответственно, аналоговые входы 15 и 16 первой 11 и второй 12 матриц сопротивлений R-2R, входы 17 и 18 для подключения обратных связей первой 11 и второй 12 матриц сопротивлений R-2R, аналоговые выходы 19 и 20 первой 11 и второй 12 матриц сопротивлений R-2R соответственно, а также вспомогательные аналоговые выходы 21 и 22 первой 11 и второй 12 матриц сопротивлений R-2R, согласованные с общей шиной источников питания, первый 23 конденсатор, включенный между выходом первого 6 дифференциального операционного усилителя и его инвертирующим входом, первый 24 резистор, включенный между выходом второго 7 дифференциального операционного усилителя, соединенным со входом 18 для подключения обратной связи второй 12 матрицы сопротивлений R-2R и инвертирующим входом первого 6 дифференциального операционного усилителя, аналоговый выход 20 второй 12 матрицы сопротивлений R-2R соединен с инвертирующим входом второго 7 дифференциального операционного усилителя и неинвертирующим входом первого 6 дифференциального операционного усилителя, неинвертирующий вход второго 7 дифференциального операционного усилителя подключен к общей шине источников питания, аналоговый выход 19 первой 11 матрицы сопротивления R-2R связан с инвертирующим входом четвертого 9 дифференциального операционного усилителя, выход которого подключен ко входу 17 для подключения обратной связи первой 11 матрицы сопротивления R-2R, выход пятого 10 дифференциального операционного усилителя связан с первым 3 выходом устройства, выход первого 6 дифференциального операционного усилителя связан со вторым 4 выходом устройства, второй 25 конденсатор, второй 26, третий 27, четвертый 28, пятый 29, шестой 30, седьмой 31, восьмой 32, девятый 33 резисторы. Второй 4 выход устройства подключен к аналоговому входу 15 первой 11 матрицы сопротивления R-2R, третий 5 выход устройства соединен с выходом третьего 8 дифференциального операционного усилителя, неинвертирующий вход четвертого 9 дифференциального операционного усилителя соединен с инвертирующим входом второго 7 дифференциального операционного усилителя и неинвертирующим входом пятого 10 дифференциального операционного усилителя, выход третьего 8 дифференциального операционного усилителя подключен к аналоговому входу 16 второй 12 матрицы сопротивлений R-2R, между выходом пятого 10 дифференциального операционного усилителя и неинвертирующим входом третьего 8 дифференциального операционного усилителя включен второй 25 конденсатор, выход четвертого 9 дифференциального операционного усилителя связан с неинвертирующим входом третьего 8 дифференциального операционного усилителя через второй 26 резистор, инвертирующий вход пятого 10 дифференциального операционного усилителя соединен со вторым 2 входом устройства через дополнительный резистор 34, и соединен с общей шиной источников питания через девятый 33 резистор, а также связан с выходом пятого 10 дифференциального операционного усилителя через четвертый 28 резистор, инвертирующий вход третьего 8 дифференциального операционного усилителя соединен с инвертирующим входом пятого 10 дифференциального операционного усилителя и через третий 27 резистор подключен к третьему 5 выходу устройства и выходу третьего 8 дифференциального операционного усилителя, первый 1 вход устройства соединен со вторым 4 выходом устройства через последовательно соединенные восьмой 32 и шестой 30 резисторы, общий узел которых связан с инвертирующим входом третьего 8 дифференциального операционного усилителя через пятый 29 резистор и подключен к общей шине источников питания через седьмой 31 резистор.

В качестве первой 11 и второй 12 матриц сопротивлений R-2R в схеме фиг. 2 могут применяться как российские (572ПА1), так и зарубежные (AD7520) перемножающие ЦАП с традиционным обозначением их выводов, которые приняты при описании формулы изобретения.

Результаты компьютерного моделирования ARCФ фиг. 2, представленные на чертеже фиг. 4 при параметрах элементов схемы, заданных на фиг. 3, показывают, что заявляемое устройство обеспечивает более чем десятикратную перестройку частоты квазирезонанса ПФ, частоты полюса ФНЧ и частоты полюса ФВЧ. При этом схема фиг. 2 имеет следующие достоинства в сравнении с прототипом: за счет введения новых связей достигается компенсация влияния частотных свойств операционных усилителей без применения дополнительного третьего конденсатора (элемента 35 на чертеже фиг. 1). При этом одновременно повышается и стабильность реализуемой фильтром добротности, так как устраняется влияние разности температурных коэффициентов используемых конденсаторов и площадей усиления операционных усилителей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6407627, 2002 г.

2. Патент US 6710644, 2004 г.

3. Патент US 3787776, 1974 г.

4. Патент SU 1777233, 1992 г.

5. Патент RU 2019023,

6. Патент SU 1758833, 1992 г.

7. Патент SU 443459, 1994 г.

8. Патент SU 1417178, 1978 г.

9. Патент US 7.737.772, 2010 г.

10. Патент SU 587602, 1978 г.

11. Патент SU 536590, 1976 г.

12. Патент SU 1363443, 1987 г.

13. C.-M. Chang, "Analytical synthesis of the digitally programmable voltage-mode OTA-C universal biquad," IEEE Transactions on Circuits and Systems-II, vol. 53, pp. 607-611, 2006. DOI: 10.1109/TCSII.2006.876411

14. M. Kumngern, B. Knobnob, K. Dejhan, "Electronically tunable high-input impedance voltage-mode universal biquadratic filter based on simple CMOS OTAs," International Journal of Electronics and Communications, vol. 64, pp. 934-939, 2010.

15. M. Kumngern, U. Torteanchai and K. Dejhan, "Electronically tunable multiple-input single-output voltage-mode multifunction filter employing simple CMOS OTAs," in Proceeding of 2010 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2010), Kuala Lumpur, Malaysia, December 6-9, 2010, pp. 1099-1102. DOI: 10.1109/APCCAS.2010.5774819

Универсальный программируемый ARC-фильтр, содержащий первый (1) и второй (2) входы, а также первый (3), второй (4) и третий (5) выходы, первый (6), второй (7), третий (8), четвертый (9) и пятый (10) дифференциальные операционные усилители, первую (11) и вторую (12) матрицы сопротивлений R-2R, каждая из которых имеет цифровое управление по многоканальным логическим входам (13) и (14) соответственно, аналоговые входы (15) и (16) первой (11) и второй (12) матриц сопротивлений R-2R, входы (17) и (18) для подключения обратных связей первой (11) и второй (12) матриц сопротивлений R-2R, аналоговые выходы (19) и (20) первой (11) и второй (12) матриц сопротивлений R-2R соответственно, а также вспомогательные аналоговые выходы (21) и (22) первой (11) и второй (12) матриц сопротивлений R-2R, согласованные с общей шиной источников питания, первый (23) конденсатор, включенный между выходом первого (6) дифференциального операционного усилителя и его инвертирующим входом, первый (24) резистор, включенный между выходом второго (7) дифференциального операционного усилителя, соединенным со входом (18) для подключения обратной связи второй (12) матрицы сопротивлений R-2R и инвертирующим входом первого (6) дифференциального операционного усилителя, аналоговый выход (20) второй (12) матрицы сопротивлений R-2R соединен с инвертирующим входом второго (7) дифференциального операционного усилителя и неинвертирующим входом первого (6) дифференциального операционного усилителя, неинвертирующий вход второго (7) дифференциального операционного усилителя подключен к общей шине источников питания, аналоговый выход (19) первой (11) матрицы сопротивления R-2R связан с инвертирующим входом четвертого (9) дифференциального операционного усилителя, выход которого подключен ко входу (17) для подключения обратной связи первой (11) матрицы сопротивления R-2R, выход пятого (10) дифференциального операционного усилителя связан с первым (3) выходом устройства, выход первого (6) дифференциального операционного усилителя связан со вторым (4) выходом устройства, второй (25) конденсатор, второй (26), третий (27), четвертый (28), пятый (29), шестой (30), седьмой (31), восьмой (32), девятый (33) резисторы, отличающийся тем, что второй (4) выход устройства подключен к аналоговому входу (15) первой (11) матрицы сопротивления R-2R, третий (5) выход устройства соединен с выходом третьего (8) дифференциального операционного усилителя, неинвертирующий вход четвертого (9) дифференциального операционного усилителя соединен с инвертирующим входом второго (7) дифференциального операционного усилителя и неинвертирующим входом пятого (10) дифференциального операционного усилителя, выход третьего (8) дифференциального операционного усилителя подключен к аналоговому входу (16) второй (12) матрицы сопротивлений R-2R, между выходом пятого (10) дифференциального операционного усилителя и неинвертирующим входом третьего (8) дифференциального операционного усилителя включен второй (25) конденсатор, выход четвертого (9) дифференциального операционного усилителя связан с неинвертирующим входом третьего (8) дифференциального операционного усилителя через второй (26) резистор, инвертирующий вход пятого (10) дифференциального операционного усилителя соединен со вторым (2) входом устройства через дополнительный резистор (34), и соединен с общей шиной источников питания через девятый (33) резистор, а также связан с выходом пятого (10) дифференциального операционного усилителя через четвертый (28) резистор, инвертирующий вход третьего (8) дифференциального операционного усилителя соединен с инвертирующим входом пятого (10) дифференциального операционного усилителя и через третий (27) резистор подключен к третьему (5) выходу устройства и выходу третьего (8) дифференциального операционного усилителя, первый (1) вход устройства соединен со вторым (4) выходом устройства через последовательно соединенные восьмой (32) и шестой (30) резисторы, общий узел которых связан с инвертирующим входом третьего (8) дифференциального операционного усилителя через пятый (29) резистор и подключен к общей шине источников питания через седьмой (31) резистор.



 

Похожие патенты:

Изобретение относится к средствам ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в обеспечении условий, при которых при перестройке частоты среза коэффициент передачи ФНЧ на нулевой частоте остается без изменений.

Изобретение относится к измерительной технике и может использоваться в качестве ограничителей спектра или широкополосных избирательных усилителей, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к частотно-избирательным средствам и может использоваться в качестве однозвенного фильтра нижних частот второго порядка с нулем передачи или как составная часть многозвенного фильтра в различных устройствах формирования и обработки радиоэлектронных сигналов.

Изобретение относится к области радиотехники. Техническим результатом является обеспечение независимой регулировки добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными.

Изобретение относится к радиоэлектронике и может быть использовано для селекции сигналов.Технический результат - перестраиваемая режекция частот в полосе пропускания полосового фильтра.

Изобретение относится к радиотехнике и связи и может быть использовано в качестве интерфейса для выделения заданного спектра источника сигнала. Технический результат заключается в обеспечении независимой подстройки трех основных параметров АЧХ – частоты полюса (ωp), затухания полюса (dp), а также коэффициента передачи в полосе пропускания (М) полосового АRC-фильтра.

Изобретение относится к области радиотехники, а также измерительной техники, и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к средствам радиотехники и связи и может быть использовано в качестве интерфейса для выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам частотной селекции сигналов в приемо-передающих устройствах связи. Технический результат заключается в расширении арсенала технических средств активных полосовых фильтров.

Изобретение относится к средствам выделения заданного спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций.

Изобретение относится к средствам ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в обеспечении условий, при которых при перестройке частоты среза коэффициент передачи ФНЧ на нулевой частоте остается без изменений.

Изобретение относится к средствам ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в обеспечении условий, при которых при перестройке частоты среза коэффициент передачи ФНЧ на нулевой частоте остается без изменений.

Изобретение относится к измерительной технике и может использоваться в качестве ограничителей спектра или широкополосных избирательных усилителей, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к измерительной технике и может использоваться в качестве ограничителей спектра или широкополосных избирательных усилителей, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к частотно-избирательным средствам и может использоваться в качестве однозвенного фильтра нижних частот второго порядка с нулем передачи или как составная часть многозвенного фильтра в различных устройствах формирования и обработки радиоэлектронных сигналов.

Изобретение относится к частотно-избирательным средствам и может использоваться в качестве однозвенного фильтра нижних частот второго порядка с нулем передачи или как составная часть многозвенного фильтра в различных устройствах формирования и обработки радиоэлектронных сигналов.

Изобретение относится к измерительной техники и может использоваться, например, в качестве ограничителей спектра или широкополосных избирательных усилителей, включаемых на входе аналого-цифровых преобразователей различного назначения.

Изобретение относится к области радиотехники. Техническим результатом является обеспечение независимой регулировки добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными.

Изобретение относится к области радиотехники. Техническим результатом является обеспечение независимой регулировки добротности полюса АЧХ, при которой коэффициент передачи и частота полюса АЧХ, зависящие от других параметров элементов, остаются постоянными.

Изобретение относится к радиоэлектронике и может быть использовано для селекции сигналов.Технический результат - перестраиваемая режекция частот в полосе пропускания полосового фильтра.
Наверх