Наномодифицированный высокопрочный легкий бетон



Наномодифицированный высокопрочный легкий бетон
Наномодифицированный высокопрочный легкий бетон

Владельцы патента RU 2718443:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Московский государственный строительный университет" (НИУ МГСУ) (RU)

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, монолитном строительстве, при возведении сооружений специального назначения. Техническим результатом изобретения является получение высокопрочного легкого бетона с высоким модулем упругости при сохранении (повышении) удельной прочности. Наномодифицированный высокопрочный легкий бетон обладает средней плотностью 1300…1510 кг/м3; пределом прочности при сжатии 50,5…65,8 МПа; удельной прочностью 38,8…43,6 МПа; коэффициентом трещиностойкости 0,084…0,085; модулем упругости 6,10…8,22 ГПа, коэффициентом Пуассона 0,093…0,136. 2 табл.

 

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления строительных изделий и конструкций, в монолитном строительстве объектов гражданского, промышленного и транспортного строительства.

В патенте на изобретение CN 108083737 А представлены рецептура и способ изготовления высокопрочного легкого конструкционного цементного бетона, включающего 1100…1200 мас. частей крупного заполнителя, 1000…1100 мас. частей цемента для тампонажных растворов, 800…900 мас. частей песка, 150…200 мас. частей микрокремнезема, 10…15 мас. частей ПАВ, 50…60 мас. частей модифицированных полых стеклянных микросфер со средней плотностью 420 кг/м3 и дисперсностью 300…400 mesh (размер частиц 37…48 мкм) и 200…250 мас. частей воды. В качестве крупного заполнителя предлагается керамзит, в качестве ПАВ - сульфонированная алкилнафталинметильная смола. Модификация микросфер состоит в очистке их поверхности и: а) плазменной обработке при пониженном давлении (7 Па) в течение 50 с при мощности разряда 60 Вт; б) плазменной обработке при пониженном давлении (7 Па) в течение 300 с при мощности разряда 350 Вт; в) CVD-обработке высокочастотным разрядом мощностью 250 Вт в течение 300 с с целью формирования акрилатов на поверхности микросфер. Техническим результатом является повышение коррозионной стойкости и предела прочности при сжатии по сравнению с существующими решениями в области легких бетонов. Удельная прочность композита составляет 35,6…37,9 МПа при средней плотности 1500 кг/м3.

Недостатком такого решения является сложная многостадийная подготовка исходных компонентов.

Известна также бетонная смесь (патент RU 2355656 С2, опубликовано 20.05.2009) включающая цемент, наполнитель, воду и базальтовое волокно диаметром 8-10 мкм и длиной 100…500 мкм, модифицированное веществом, выбранным из группы, включающей полиэдральные многослойные углеродные наноструктуры фуллероидного типа, имеющие межслоевое расстояние 0,34…0,36 нм, средний размер частиц 60…200 нм и насыпную плотность 0,6…0,8 г/см3, и многослойные углеродные нанотрубки, имеющие межслоевое расстояние 0,34…0,36 нм, взятым в количестве 0,0001…0,005 мас. ч. на одну мас. ч. базальтового волокна, причем в качестве наполнителя смесь содержит компонент, выбранный из группы, включающей смесь гравия с песком и смесь гравия с алюмосиликатными микросферами, и дополнительно бетонная смесь содержит пластификатор -полинафталинметиленсульфонат натрия при следующем соотношении компонентов (% мас.): цемент - 24…48, наполнитель 30…60, модифицированное базальтовое волокно 2…6, пластификатор 0,9…1,1, вода остальное.

Недостатком такой бетонной смеси является невысокое значение удельной прочности (отношение предела прочности при сжатии к относительной плотности материала) 22…28,8 МПа при 1630…1680 кг/м3.

Наиболее близким по технической сущности является состав высокопрочного легкого бетона (патент RU 2515450 С1, опубликовано 10.05.2014), включающий цемент, полые микросферы, микрокремнезем, каменную муку, кварцевый песок, пластификатор и воду, мас. %: цемент - 30,0…60,0; микрокремнезем - 3,5…15,0; каменная мука - 1,5…12,0; кварцевый песок - 5,0…35,0; микросферы - 3,5…35,0; пластификатор - 0,27…0,48; вода - остальное.

Недостатком такого высокопрочного легкого бетона является невысокое значение модуля упругости.

Техническим результатом изобретения является получение высокопрочного легкого бетона с высоким модулем упругости при сохранении (повышении) удельной прочности.

Поставленный технический результат достигается тем, что высокопрочный легкий бетон содержащий портландцемент, наполнитель, пластификатор и воду, а также минеральную часть, состоящую из микрокремнезема, имеющего средний размер частиц 0,01…1 мкм, каменной муки (продукт измельчения кварцевого песка или другой горной породы, содержащей кремнезем) с площадью удельной поверхности 750 м2/кг и кварцевого песка фракции 0,16-0,63 мм, в качестве пластификатора используются гиперпластификаторы на поликарбоксилатной основе, наполнителем выступают полые алюмосиликатные микросферы, дополнительно на поверхности полых микросфер содержится наноразмерный модификатор, представляющий собой коллоидный раствор золя кремневой кислоты и золя гидроксида железа (III) с размером частиц менее 30 нм, где концентрация кремневой кислоты в форме H2SiO3 составляет 3,02%, при следующем соотношении компонентов, мас. %:

Портландцемент - 41,3…45,8
Микрокремнезем - 6,92…7,65
Указанная каменная мука - 1,78…5,86
Указанный кварцевый песок - 2,7…14,7
Наномодифицированные алюмосиликатные
микросферы, - 15,4…20,8
в том числе указанный наномодификатор - 0,010…0,012
Указанный пластификатор - 0,410…0,458
Вода - остальное

Для приготовления бетона используются портландцемент, например, марки СЕМ I 42,5 N по ГОСТ 31108-2003. Минеральная часть, в состав которой входит кварцевый песок фракционированный (фр. 0,16-0,63 мм), соответствующий ГОСТ 8739-93, каменная мука с удельной поверхностью 750 м2/кг и микрокремнезем, обеспечивают заполнение межзерновых пустот наполнителя, образуя плотную структуру.

В качестве наполнителя используются алюмосиликатные полные микросферы, характерные свойства которых обеспечивают снижение средней плотности. Указанные микросферы является носителем наномодификатора, что позволяет с одной стороны распределить его по объему композита, а с другой - использовать химическую активность его составляющих локализовано, на границе раздела фаз «цементный камень -микросфера».

Наномодификатор представляет собой коллоидный раствор на основе золя гидроксида железа (III) и кремневой кислоты и используется для поверхностного модифицирования наполнителя [1, 2]. Образуя кремний-кислородный каркас, выступающий стабилизатором наночастиц гидроксида железа (III), на поверхности микросфер, модификатор создает вторичную оболочку, схожую по составу с материалом носителя. Функциональное назначение наномодификатора заключается в обеспечении на поверхностности полых микросфер активного по отношению к вяжущему веществу и продуктам его гидратации слоя, обеспечивающего зону контакта «наполнитель-цементный камень» дополнительным количеством гидросиликатов [3], уплотняя и упрочняя границу раздела фаз [4-6] -наиболее слабую часть формирующегося композита.

Применение в качестве пластификатора гиперпластификатора на основе поликарбоксилатов типа «Melflux 1641F» позволяет увеличить подвижность и снизить водопотребность бетонной смеси.

Наномодифицированный высокопрочный легкий бетон готовят следующим образом. Предварительно подготавливаются микросферы, путем перемешивания их с коллоидным раствором золя кремневой кислоты и золя гидроксида железа (III) (аппретирование) перед приготовлением бетонной смеси. Наномодифицирование микросфер также может осуществлять на этапе производства микросфер, когда аппретирование выполняется перед термической обработкой частиц после флотации. Затем смешивают в смесителе портландцемент, каменную муку и микрокремнезем с наномодифицированными микросферами до получения однородной цементно-минерального смеси, вводят растворенный в воде гиперпластификатор, перемешивая до получения однородной смеси, после чего добавляют фракционированный песок и перемешивают в соответствии с EN 196-1-ASTM С305. Из полученной смеси изготавливают образцы для испытаний: балочки размером 40×40×160 мм, кубы 70×70×70 мм и призмы 70×70×280 мм.

Испытания проводятся по следующим методикам:

- ГОСТ 12730.1-78. Бетоны. Методы для определения плотности;

- ГОСТ 10180-90. Бетоны. Методы для определения прочности по контрольным образцам.

- ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона.

Подвижность бетонной смеси оценивали по диаметру расплыва конуса размерами D×d×h - 101,6×69,9×50,8 мм на встряхивающем столике (ASTM С230) в соответствии с методикой согласно п. 1.3 ГОСТ 310.4-81 «Цементы. Методы определения предела прочности при изгибе и сжатии».

Удельная прочность рассчитывается по формуле:

Rуд=Rсжотн,

где Rсж - предел прочности при сжатии, МПа, ρотн - относительная плотность: ρотнсроср - средняя плотность бетона; ρо - плотность воды).

Коэффициент трещиностойкости - отношение предела прочности при изгибе к пределу прочности при сжатии.

Составы предлагаемого наномодифицированного высокопрочного легкого бетона приведены в таблице 1, а его физико-механические и деформативные свойства - в таблице 2.

Как видно из таблицы 2, предлагаемый наномодифицированный высокопрочный легкий бетон обладает боле высоким модулем упругости (в 1,11…1,48 раза), прочностью при сжатии (в 1,11…1,45 раз) при сопоставимой удельной прочностью (увеличение удельной прочности составляет 10…24%) по сравнению с прототипом.

Используемые источники

1. Inozemtcev A.S., Korolev E.V. A method for the reduction of deformation of high-strength lightweight cement concrete // Advances in Cement Research. 2016. T. 28. №2. C. 92-98.

2. Inozemtcev A.S., Korolev E.V., Smirnov V.A. Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete / Structural Concrete. 2017. T. 18. №1. C. 67-74.

3. Иноземцев A.C., Королев E.B. Структурообразование и свойства конструкционных высокопрочных легких бетонов с применением наномодификатора Bisnanoactivus // Строительные материалы. 2014. №1-2. С. 33-37.

4. Иноземцев А.С., Королев Е.В. Прочность наномодифицированных высокопрочных легких бетонов // Нанотехнологии в строительстве: научный интернет-журнал. 2013. Т. 5. №1. С. 24-38.

5. Иноземцев А.С. Средняя плотность и пористость высокопрочных легких бетонов // Инженерно-строительный журнал. 2014. №7 (51). С. 31-37.

6. Иноземцев А.С, Королев Е.В. Деформации высокопрочных легких бетонов на полых микросферах и способ их снижения // Строительные материалы. 2015. №9. С. 23-30.

Наномодицированный высокопрочный легкий бетон содержит портландцемент, наполнитель, пластификатор и воду, а также минеральную часть, состоящую из микрокремнезема, имеющего средний размер частиц 0,01…1 мкм, каменной муки (продукт измельчения кварцевого песка или другой горной породы, содержащей кремнезем) с площадью удельной поверхности 750 м2/кг и кварцевого песка фракции 0,16-0,63 мм, в качестве пластификатора используется гиперпластификаторы на поликарбоксилатной основе, наполнителем выступают полые алюмосиликатные микросферы, отличающийся тем, что дополнительно на поверхности полых микросфер содержится наноразмерный модификатор, представляющий собой коллоидный раствор золя кремневой кислоты и золя гидроксида железа (III) с размером частиц менее 30 нм, где концентрация кремневой кислоты в форме H2SiO3 составляет 3,02%, при следующем соотношении компонентов, мас. %:

Портландцемент 41,3…45,8
Микрокремнезем 6,92…7,65
Указанная каменная мука 1,78…5,86
Указанный кварцевый песок 2,7…14,7
Наномодифицированные алюмосиликатные
микросферы 15,4…20,8
в том числе указанный наномодификатор 0,010…0,012
Указанный пластификатор 0,410…0,458
Вода остальное



 

Похожие патенты:

Изобретение относится к области производства строительных материалов, в частности к производству легких бетонов. Бетонная смесь для легкого бетона включает, мас.%: портландцемент - 17,0-19,0, кремнистую опоку с модулем крупности Мкр 1,8-2,0 - 60,2-64,75, крошку, образующуюся в процессе обрезки готовых теплоизоляционных плит PIR на основе пенополиизоцианурата, фракции 0,8-5,0 мм - 1,5-3,0, суперпластификатор MasterPolyheed 3045 - 0,3-0,9, воду - остальное.

Изобретение относится к области строительных материалов и может быть использовано для изготовления легкого бетона, используемого в промышленном и гражданском строительстве.

Изобретение относится к составам бетона и может быть использовано в гражданском и промышленном строительстве для изготовления цементных композитов с высокими звукопоглощающими свойствами.

Изобретение относится к получению керамических сотовых структур для извлечения диоксида углерода или других газообразных химических соединений из газовых потоков или в качестве каталитических преобразователей.

Изобретение относится к гипсовым панелям с пониженной массой и плотностью с улучшенными теплоизоляционными свойствами, устойчивостью к термоусадке и огнестойкостью.

Изобретение относится к производству строительных материалов, а именно крупнопористых легких бетонов, и может быть использовано для изготовления мелкоштучных конструкционно-теплоизоляционных стеновых изделий для малоэтажного и коттеджного строительства.

Изобретение относится к заводскому изготовлению сборных изделий (стеновых блоков, надпроемных перемычек и теплоизоляционных плит) из полистиролбетона ПСБ повышенной прочности с минимальной плотностью и теплопроводностью, используемых в теплосберегающих ограждающих конструкциях зданий (наружных стенах, утепляемых покрытиях и перекрытиях).
Изобретение относится к области строительства, в частности к производству легковесных строительных плит из материала на основе портландцемента, обладающих теплоизоляционными и огнезащитными характеристиками, и может быть использовано для защиты от огня в условиях пожара эксплуатируемых в условиях открытой атмосферы несущих металлических и железобетонных конструкций зданий и сооружений.
Изобретение относится к технологии строительных материалов, а именно к способам изготовления теплоизоляционных и конструкционно-теплоизоляционных строительных изделий с использованием вспененного полистирола.

Изобретение относится к производству строительных материалов, которые могут быть использованы для изготовления футеровок трубчатых печей, в условиях частых температурных перепадов и умеренных эрозионных воздействий, однослойных футеровок реакторов и регенераторов, установок каталитического крекинга методом торкретирования.

Изобретение относится к композициям для использования при цементировании подземных скважин, содержащим воду, неорганический цемент и один или более материалов в виде частиц, которые набухают при контакте с несмешиваемой с водой текучей средой.

Изобретение относится к дорожному строительству и может быть использовано для стабилизации грунтов верхнего рабочего слоя земляного полотна автомобильных и железных дорог различного назначения, а также для устройства прочных грунтовых слоев основания дорожной одежды при строительстве и ремонте автомобильных и железных дорог.

Цементирующее вяжущее содержит гидравлическое вяжущее в количестве от 50 до 80 мас. % от массы цементирующего вяжущего; первый материал на основе диоксида кремния в количестве от 0,5 до 35 мас.

Изобретение относится к способу получения диспергатора. Описан способ получения диспергатора, включающий этапы а) предоставление по меньшей мере одного водорастворимого полимера, включающего группы простого полиэфира, б) предоставление неорганического компонента, включающего по меньшей мере один филлосиликат, который имеет суммарный поверхностный заряд 0, 1 или 2, в) получение водной суспензии, включающей по меньшей мере один водорастворимый полимер, включающий группы простого полиэфира, и неорганический компонент, включающий по меньшей мере один филлосиликат, г) распылительная сушка водной суспензии, чтобы получить твердое вещество.

Изобретение относится к области производства строительных материалов, в частности к производству легких бетонов. Бетонная смесь для легкого бетона включает, мас.%: портландцемент - 17,0-19,0, кремнистую опоку с модулем крупности Мкр 1,8-2,0 - 60,2-64,75, крошку, образующуюся в процессе обрезки готовых теплоизоляционных плит PIR на основе пенополиизоцианурата, фракции 0,8-5,0 мм - 1,5-3,0, суперпластификатор MasterPolyheed 3045 - 0,3-0,9, воду - остальное.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к способам защиты строительных материалов от воздействия грибковых заражений и может быть использовано в процессах производства строительных растворов, на основе минеральных вяжущих.
Изобретение относится к производству строительных материалов и может быть использовано для изготовления теплоизоляционных и конструкционно-теплоизоляционных бетонов для жилищного и гражданского строительства.

В способе приготовления бетонной смеси, включающем перемешивание цемента, заполнителей, суперпластификатора и воды затворения, в бетоносмеситель сначала загружают мелкий заполнитель, представляющий собой смесь природного кварцевого песка с модулем крупности до 1,5 и отсева камнедробления фракции 0-5 мм с модулем крупности не ниже 2,5 при соотношении соответственно (масс %): (40-50):(50-60), а в качестве суперпластификатора комплексный суперпластификатор на основе поликарбоксилата и часть воды затворения в количестве 55-65% от общего ее расхода и предварительно перемешивают их в течение 80-90 с, затем в бетоносмеситель загружают крупный заполнитель, цемент и остальную часть воды затворения, после чего бетонную смесь окончательно перемешивают в течение 50-60 с.

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при возведении сооружений специального назначения.

Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, монолитном строительстве, при возведении сооружений специального назначения. Техническим результатом изобретения является получение высокопрочного легкого бетона с высоким модулем упругости при сохранении удельной прочности. Наномодифицированный высокопрочный легкий бетон обладает средней плотностью 1300…1510 кгм3; пределом прочности при сжатии 50,5…65,8 МПа; удельной прочностью 38,8…43,6 МПа; коэффициентом трещиностойкости 0,084…0,085; модулем упругости 6,10…8,22 ГПа, коэффициентом Пуассона 0,093…0,136. 2 табл.

Наверх