Пленочный конденсатор

Изобретение относится к области электротехники, а более конкретно к слоистым пленочным конденсаторам, и может быть использовано при производстве электрохимических суперконденсаторов с емкостью выше 5 В. Конденсатор содержит два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, которые образуют ячейку конденсатора, размещенную в корпусе. К электродам ячейки подсоединены токоотводы, выполненные из металла, инертного к электролиту. Сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г. Суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм, при температуре 60-80°С, при этом нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон составляет 150-200 нм. Вакуумную пропитку ячейки электролитом проводят в среде аргона. Повышение надежности работы конденсатора при температурах до 350°С является техническим результатом изобретения. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным конденсаторам и может быть использовано при производстве электрохимических суперконденсаторов.

Суперконденсаторы (ионисторы, ультраконденсаторы) представляют собой элементы питания, которые занимают промежуточное положение между химическими источниками тока (аккумуляторами и батарейками) и обыкновенными конденсаторами.

Известен конденсатор (Патент RU №2041517, опубл 09.08.1995), который содержит два электрода, разделенные ионопроводящим сепаратором, пропитанные органическим электролитом, и обкладки, охватывающие электроды, выполненные из металла, инертного к электролиту, и разделенные по периметру диэлектрической прокладкой. Электроды изготовлены из углеродных волокон, пропитанных полимерными связующим, спеченных под давлением. На внешней поверхности электродов последовательно расположены слой металла толщиной 0,25-5 мкм, нанесенный методом вакуумного напыления, и слой металла толщиной 5-250 мкм, нанесенный плазменным напылением. Последний неразрывно соединен с обкладками конденсатора.

Известен также конденсатор (Патент RU №2095873, опубл 10.11.1996), который содержит пористый ионопроводящий сепаратор с нанесенными на его поверхность углеродными электродами и проводящими графитовыми слоями толщиной 1,0-10 мкм, пропитанные электролитом. Непроницаемые для электролита и инертные к нему токосъемники охватывают электроды и разделены по периметру конденсатора диэлектрическим герметизирующим слоем. Конденсатор изготавливают путем последовательного напыления на поверхность сепаратора смеси углерода с электролитом и смеси мелкодисперсного графита с размером частиц 0,01-1,0 мкм и электролита в количестве 1-10 мг/см2 в пересчете на графит, изготовления токосъемников, сборки конденсатора и его герметизацию.

Однако данные конструкции имеют следующие недостатки: стабильность электрических параметров конденсатора с двойным электрическим слоем с электродами из углеродных волокон определяется как величиной удельной поверхности, пропитанной электролитом, так и соотношением пор в структуре высокопористого материала. Их совокупность приводит к непредсказуемости изменения электрических параметров в процессе эксплуатации конденсатора. Усилие сжатия конденсатора с двойным электрическим слоем в процессе эксплуатации ослабевает, так как углеродные волокна обладают упругостью, что приводит к ухудшению контактов и росту сопротивления. Отдельные углеродные волокна, расположенные под углом к поверхности электрода, могут прокалывать сепаратор, замыкая электроды, что снижает надежность конденсатора с двойным электрическим слоем.

Наиболее близким по технической сущности является пленочный электрохимический конденсатор (Патент RU №2644398, опубл. 20.11.2014), который включает первый электрод, второй электрод, расположенный между ними сепаратор, образующие ячейку конденсатора. Первый электрод содержит Mg, Na, Zn, Al, Sn, TiO2 или комбинацию этих материалов, а также Li и предварительно литерованный углерод, Второй электрод включает пористый материал с отношением площади поверхности к объему по меньшей мере 10 м2/см3. В качестве пористого материала может быть выбран пористый углерод или пассивированный, например, электропроводным материалом пористый кремний, а также может быть использован пористый германий, пористое олово и пористый диоксид титана. Другими материалами для изготовления электрода могут быть материалы на углеродной основе, например, активированный углерод, углеродные нанотрубки, углеродные нанонити, графеновые структуры и другие подобные материалы, сплавы, такие как сплав кремния с германием, и металлы, такие как медь, алюминий, никель. Второй электрод может иметь поверхность с нанесенным на нее материалом покрытия из псевдоемкостного материала. Материал покрытия может быть электропроводным материалом. Сепаратор может быть выполнен из пористой керамики, полимерной пленки или комбинации этих материалов. Могут быть взяты материалы на основе нетканого полипропилена и микропористых мембран (из пористого политетрафторэтилена или полиэтилена высокой плотности). Один или оба электрода могут быть соединены с коллектором тока - токоотводом. Ячейка конденсатора размещена в корпусе и пропитана электролитом. Электролит может представлять собой раствор электролита в органическом растворителе, такой как одномолярный раствор гексафторфосфата лития (LiPF6) в пропиленкарбонате или одномолярный раствор перхлората лития (LiClO4) в пропиленкарбонате. Могут быть также использованы другие соли лития и другие органические растворители.

Недостатком прототипа является недостаточно высокая надежность работы конденсатора за счет недостаточного обеспечения взрывобезопасности в процессе эксплуатации.

Техническая задача данного технического решения является создание пленочного конденсатора с более высокой надежностью работы за счет повышения температуры эксплуатации конденсатора, стойкости к пробою и прочности на прокол, а следовательно создание взрывобезопасного конденсатора при получении емкостных характеристик выше 5 В.

Поставленная задача достигается тем, что пленочный конденсатор содержит два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, образующие ячейку конденсатора, размещенную в корпусе. К электродам ячейки подсоединены токоотводы, выполненные из металла инертного к электролиту. Новым является то, что сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г. Нетканый волокнистый материал имеет поры с диаметром превышающим минимальный размер углеродных нанотрубок. Кроме этого суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм. при температуре 60-80°С. Нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон 150-200 нм. Ячейка конденсатора смотана в рулон, на торцы которого нанесено гальваническое покрытие цинк-висмут, соединенное с токоотводами.

Техническое решение поясняется чертежами, где на фиг. 1, представлена пленочная структура электрода конденсатора, на фиг. 2 представлена ячейка конденсатора в разрезе.

Пленочный конденсатор (фиг. 1, 2) содержит два электрода 3, разделенные ионопроводящим сепаратором 1, которые образуют ячейку конденсатора. Сепаратор выполнен из нетканого волокнистого материала, который расположен на подложке, например, полимерном или бумажном основании, обеспечивающим технологичность нетканого волокнистого материала. Нетканый волокнистый материал может быть изготовлен из волокна, например, полианилиннового, полиэтиленового или фторопластового с диаметром волокон 150-200 нм. Нетканый волокнистый материал имеет толщину 23-31 мкм, поверхностную плотность 9-32 г/м2. На волокнистую поверхность нетканого материала нанесена суспензия углеродной массы, образованной из углеродных нанотрубок, разведенных в твердом полимерном электролите в количестве 2-4 мг/см2. Такая концентрации нанотрубок в электролите обеспечивает создание низковязкой углеродной массы с заданной электронной проводимостью полученной суспензии. Для разведения порошка углеродных нанотрубок в твердом полимерном электролите используют вакуумный миксер-гомогенизатор. При этом порошок содержит углеродные нанотрубки разных размеров, например, в диапазоне 10-50 нм. В качестве твердого полимерного электролита может быть взят электролит на основе перхлората лития LiClO4 с добавлением термоокисленного полиметилметакрилата, N-метилпирорролидона, тетрагидрофурана, полиакрилонитрил. Полученную суспензию низковязкой углеродной массы в горячем состоянии при температуре 60-80°С наносят тонким слоем на поверхность нетканого волокнистого материала. Для этого используют безвоздушное распыление суспензии при давлении аргона не менее 3 атм. При этом суспензия покрывает волокна нетканого материала тонким слоем и проникает в поры волокнистого материала, заполняя его объемное пространство. При давлении >3 атм волокнистый материал сепаратора пропитывается суспензией полностью до подложки. Экспериментальные исследования показали, что при давлении аргона <3 атм нетканый материал пропитывается не полностью. Полная или частичная пропитка нетканого материала при проведении распыления видна визуально, т.к нетканый материал изготовлен белого цвета, а углеродный наполнитель имеет черный цвет. Нетканый волокнистый материал имеет поры с диаметром превышающим минимальный размер углеродных нанотрубок. За счет этого при распылении под давлением частицы углеродных нанотрубок меньшего размера, для которых нетканый материал является фильтром, проникают в поры волокнистого материала, а частицы большего размера до 50 нм образуют тонкий слой на поверхности нетканого материала, увеличивая поверхность сепаратора, что позволяет увеличить емкость конденсатора. При этом получают комбинированный сепаратор 1 с теплоизолирующим углеродным покрытием в виде тонкого слоя углеродных нанотрубок, который образует проводящий электрод 2 (фиг. 1, 2) с поверхностным сопротивлением 4 ом/см2. Суспензию наносят в горячем состоянии для обеспечения лучшего ее распыления. Экспериментально установлено, что оптимальная температура распыления составляет 60°-80°С. Затем волокнистый материал охлаждают до комнатной температуры и получают комбинированный полимеризированный сепаратор, который затвердевает и образует монолитный слой. При полной пропитке волокнистого материала частицами углеродных нанотрубок получают электрод-сепаратор с развернутой площадью поверхности 1900-2100 м2/г. Данные о поверхности и пористости получены по адсорбции азота при 77К с помощью прибора Autosorb-iQ (Quantachrome Instruments). Такой сепаратор приобретает свойства керамической основы и позволяет выдерживать высокие температуры до 350° при работе конденсатора. Таким образом предложенная конструкция электрода-сепаратора обеспечивает высокую температуру эксплуатации конденсатора. У полимеризированного сепаратора увеличивается также прочность на прокол, стойкость к пробою, что обеспечивает взрывобезопасность конденсатора. Затем на углеродное покрытие 2 сепаратора в установке вакуумного магнетронного напыления наносят проводящий слой - электрод конденсатора 3, полученный, например, из композита литий-олово. Получают пленочную структуру (фиг. 1), из которой собирают ячейку конденсатора (фиг. 2) - разрезают структуру на прямоугольник, снимают подложку нетканого волокнистого материала, и складывают поверхностями со стороны сепараторов 1. Ячейку конденсатора сматывают в рулон, на торцы которого наносят гальваническое покрытие цинк-висмут толщиной 5 мкм, с которым соединяют внешние токоотводы 4. Токоотводы выполнены из металла инертного к электролиту и примыкают к электродам. Затем ячейку помещают в корпус, пропитывают электролитом и герметизируют в вакуумном перчаточном боксе. В качестве электролита использован 1 Моль раствора перхлората лития (LiClO4) в пропиленкарбонате.

Изготовление и сборку ячейки конденсатора осуществляют следующим образом. На волокнистую поверхность нетканого материала на установке безвоздушного распыления наносят суспензию углеродной массы. Затем ионно-плазменным распылением на полученный комбинированный сепаратор наносят слой проводящего материала электрода. Полученные пленочные структуры (фиг. 1) нарезают на прямоугольники размером 4200×98 мм. Собирают ячейку конденсатора из двух слоев сепаратора с нанесенным электродом. Ячейку сматывают в рулон и производят оцинкование торцов ячейки гальваническим способом. Затем ячейку сушат в вакуумном термошкафу и помещают в алюминиевый корпус с изолирующей вставкой, который закрывают крышкой. Внешние токоотводы припаивают соответственно с оцинкованными торцами. Завальцовывают крышку корпуса. Ячейку в корпусе помещают в вакуумный бокс для вакуумной пропитки электролитом через отверстие в крышке. Пропитку ячейки электролитом проводят в вакуумном боксе в среде аргона.

Предложен пленочный конденсатор, который обеспечивает надежную работу при высоких температурах до 350°С. Конденсатор имеет более высокую стойкость к пробою и прочность на прокол, а соответственно разработан взрывобезопасный пленочный конденсатор. При этом конденсатор имеет емкость выше 5 В.

1. Пленочный конденсатор, содержащий два электрода на основе углеродного материала и комбинации металлов, разделенных ионопроводящим сепаратором, образующие ячейку конденсатора, размещенную в корпусе, к электродам ячейки подсоединены токоотводы, выполненные из металла, инертного к электролиту, отличающийся тем, что сепаратор выполнен из нетканого волокнистого материала, на волокна которого нанесена безвоздушным распылением под давлением суспензия углеродной массы, образованная из углеродных нанотрубок, диспергированных в твердом полимерном электролите в количестве 2-4 мг/см2, с образованием на нетканом волокнистом материале покрытия, имеющего развернутую площадь поверхности 1900-2100 м2/г, при этом нетканый волокнистый материал имеет поры с диаметром, превышающим минимальный размер углеродных нанотрубок.

2. Пленочный конденсатор по п. 1, отличающийся тем, что суспензия углеродной массы нанесена на нетканый материал безвоздушным распылением под давлением не менее 3 атм при температуре 60-80°С.

3. Пленочный конденсатор по п. 1, отличающийся тем, что нетканый волокнистый материал имеет толщину 23-31 мкм и диаметр волокон 150-200 нм.

4. Пленочный конденсатор по п. 1, отличающийся тем, что ячейка конденсатора смотана в рулон, на торцы которого нанесено гальваническое покрытие цинк-висмут, соединенное с токоотводами.



 

Похожие патенты:

Изобретение относится к периодически заряжаемому электрохимическому аккумуляторному элементу с положительным электродом, отрицательным электродом, сепаратором, расположенным между положительным и отрицательным электродами, электролитом на основе SO2 с содержанием увеличивающей его электропроводность соли активного металла аккумуляторного элемента.

Изобретение относится к области электротехники, а именно к гибкой литиевой батарее, которая может решить проблему короткого замыкания, вызываемого разделением токоприемного слоя и слоя активного материала во время изгибания батареи.

Изобретение относится к области электротехники и раскрывает композитные электродные материалы с усовершенствованной структурой, которые могут быть использованы при изготовлении литий-ионных аккумуляторов.

Изобретение относится к области электротехники, а именно к устройствам для защиты литий-ионных аккумуляторов от возгорания, обеспечивающим повышенное быстродействие в обнаружении и ликвидации очага возгорания литий-ионного аккумулятора.

Изобретение относится к области электротехники, а именно к способам и системам для управления устройством аккумулирования тепла системы транспортного средства. В одном примере способ содержит шаги, на которых: оценивают температуру теплового аккумулятора после достижения теплового равновесия между аккумулятором и находящимся в нем хладагентом и определяют степень заряженности аккумулятора по результату оценки температуры и одному или нескольким химическим свойствам двух материалов с фазовым переходом, содержащихся в аккумуляторе, при этом тепловой аккумулятор может содержать два материала с фазовым переходом с разными точками плавления для обеспечения тепловой энергии для нагрева хладагента в системе хладагента транспортного средства.

Изобретение относится к области электротехники, а именно, к блоку аккумуляторных батарей с улучшенным терморегулированием, который может найти применение для полностью электрического транспортного средства (электромобиля, EV), гибридного транспортного средства с подзарядкой от электросети (PHEV), гибридного транспортного средства (HEV), а также к способу его изготовления.

Изобретение относится к технологии получения титаната натрия Na2Ti3O7, который может быть использован в качестве эффективного анодного материала литиевых и натриевых источников тока, фотокатализатора в ультрафиолетовом и видимом диапазоне света, газочувствительного сенсора для определения влажности воздуха, сепаратора химического источника тока, предотвращающего замыкание электродов и обеспечивающего ионный ток в электролите.

Изобретение относится к области электротехники, в частности к хирургическим инструментам. Технический результат заключается в обеспечении надежного питания для хирургического инструмента.

Изобретение относится к способу получения ионного проводника. В соответствии с одним вариантом реализации настоящего изобретения предложен способ получения ионного проводника, включающий: смешивание, с применением растворителя, LiBH4 и галогенида лития, представленного формулой (1), LiX (1) (в формуле (1) X представляет собой элемент, выбранный из группы, состоящей из атомов галогенов); и удаление растворителя при 60-280°С.

Изобретение относится к автомобильной аккумуляторной батарее, включающей в себя модуль (2) аккумуляторной батареи, который имеет несколько расположенных в виде стопы элементов (3) аккумуляторной батареи, удерживающую структуру, окружающую модуль (2) аккумуляторной батареи, имеющую две боковые части (6), которые расположены параллельно боковым стенкам такой стопы из элементов (3) аккумуляторной батареи и на противоположных боковых стенках модуля (2) аккумуляторной батареи, расположенный под модулем (2) аккумуляторной батареи теплоотвод и расположенную между теплоотводом и нижней стороной модуля (2) аккумуляторной батареи теплопроводящую прокладку, которая термически соединяет модуль (2) аккумуляторной батареи с теплоотводом.

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным электродам для электролитических конденсаторов. Пленочный конденсатор содержит многослойный электрод, основа которого с развитой поверхностью через адгезионный металлизирующий нанослой скреплена с наноразмерным покрытием в форме, как минимум, двух слоев: функционального из титана и/или алюминия, который дополнительно наращивается посредством электрофореза из жидкой среды, и второй - диэлектрик, сформированный из оксидов алюминия и титана, который содержит в объеме и на границах разделов нанокластеры металла размером 0,5-50 нм, допируемые посредством электрических разрядов в жидкой среде, при этом поверхность диэлектрика конформно покрыта слоем электролита.

Заявленное изобретение относится к области электротехники и направлено на предотвращение изменения емкости при смещении электродов, расположенных один напротив другого через слой диэлектрика.

Изобретение относится к микроэлектронике, а более конкретно к способам изготовления многослойных нанокомпозитов для конденсаторов, в частности наноструктур металл-диэлектрик-металл (МДМ) с нанометровой толщиной слоев.

Изобретение относится к радиотехнике, к радиотехническим элементам, применяемым в электрических цепях с частотной избирательностью, и может быть использовано в трактах промежуточной частоты радиоприемных устройств.

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным электродам для электролитических конденсаторов, слои которых имеют существенные отличия по составу и физической структуре.

Изобретение относится к конденсаторам постоянной емкости. .

Изобретение относится к электронной технике и может быть использовано при производстве тонкопленочных гибридных и монолитных интегральных схем при изготовлении тонкопленочных конденсаторов.

Изобретение относится к радиоэлектронике, конкретно к электронакопительным устройствам. .

Изобретение относится к области электротехники, а именно к алюминиевому оксидно-электролитическому конденсатору на номинальное напряжение 160-450 В с диапазоном рабочих температур от минус 60 до плюс 125°С, а также к рабочему электролиту для него и способу приготовления электролита.
Наверх