Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали



Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
C21D1/26 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2718604:

Публичное акционерное общество "Магнитогорский металлургический комбинат" (RU)

Изобретение относится к области металлургии, а именно к производству холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. Для повышения пластичности, а также расширения технологических возможностей для получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180 способ включает нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, причем заготовка получена из стали, содержащей следующие компоненты, мас.%: углерод 0,11-0,13, кремний 0,02-0,40, марганец 2,0-2,2, хром 0,25-0,40, молибден 0,10-0,30, ниобий 0,015-0,025, железо и неизбежные примеси - остальное, в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 нагрев ведут до 770-790°С и класса прочности 1180 нагрев ведут до 730-750°С, а скорость движения проката в агрегате непрерывного отжига для классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью V=(80-20h)±10, где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью V=(140-40h)±200, где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин. 2 табл.

 

Изобретение относится к области металлургии, а именно к способам производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, который может быть использован в автомобильной промышленности. В настоящее время все более востребован такой прокат с минимальным пределом прочности 780, 980 и 1180 МПа (высокопрочный прокат классов прочности 780, 980 и 1180). Используемая в настоящее время сталь для производства проката трех указанных классов прочности, как правило, имеет различный химический состав. Отсутствуют кассетные технологии производства из сталей одного химического состава холоднокатаного проката разных классов прочности, что затрудняет выполнение малых заказов. Производимый в настоящее время прокат указанных классов прочности, как правило, имеет значения относительного удлинения на нижнем пределе предъявляемых требований. При этом наблюдается нестабильность значений прочностных характеристик в пределах одного класса прочности, что затрудняет переработку проката у потребителей. Поэтому актуально проведение исследований, направленных на преодоление указанных недостатков.

Известен способ производства холоднокатаных листов из двухфазной стали, обладающей очень высокой прочностью, и полученные таким способом листы. Из стали, содержащей в % мас.: 0,055≤С≤0,095, 2≤Mn≤2,6. 0,005≤Si≤0,35, S≤0,005, Р≤0,050, 0,1≤Al≤0.3, 0,05≤Мо≤0,2, 0,2≤Cr≤0,5, при условии, что Cr+2Mo≤0,6, Ni≤0,l, 0,010≤Nb≤0,040, 0,010≤Ti≤0,050, 0,0005≤B≤0,0025, 0,002≤N≤0,007, остальное железо и неизбежные примеси, возникающие при плавке, отливают полуфабрикат. Нагревают его до 1150°C≤Tr≤1250°C и подвергают горячей прокатке при температуре конца прокатки TFL≤Ar3, а затем сматывают в рулон при температуре в пределах 500oC≤Tbob≤570°C. Очищают от окалины и проводят холодную прокатку при обжатии от 30 до 80%. Полученный холоднокатаный полуфабрикат нагревают со скоростью 1°С/сек≤VC≤5°С/сек до температуры отжига Тм, определяемой как Ас1+40°С≤Тм≤Ас3-30°С, при которой выдерживают в течение времени 30 ceк≤tм≤300 сек для образования структуры, содержащей аустенит, после чего охлаждают до температуры ниже Ms со скоростью V, достаточно высокой для превращения всего количества аустенита в мартенсит.Получаемые листы обладают хорошей способностью к формованию и к изгибам при обеспечении прочности стали от 980 до 1180 МПа, предела текучести до 700 МПа и удлинении при разрыве выше 9%. Отношение предела текучести к пределу прочности составляет 0,6-0,8. Недостатком данного способа является низкая пластичность, а также сравнительно высокий предел текучести. Кроме того, данный способ не позволяет дифференцированно получать уровень свойств, соответствующий двум соседним классам прочности 980 и 1180.

(Заявка на изобретение WO 2009150319(А1) C21D 8/02, С22С 38/04, С23С 2/02, С23С 2/06 опубликована 17.12.2009).

Известен способ производства экономичной холоднокатаной стали DP590 с различным пределом текучести. Согласно способу, холоднокатаную сталь DP590 с пределом текучести 280-330 МПа, 340-400 МПа и 420-490 МПа получают путем нагрева, горячей прокатки, травления и непрерывного отжига стальной заготовки. Сталь содержит компоненты, % мас.: С 0,08-0,10; Si≤0,4, Mn 1,20-1,40; Al 0,60-0,80; Мо 0,20-0,30; N≤0,005; Р≤0,008; S≤0,005, остальное Fe и другие неизбежные примеси.

Для стали DP590 с пределом текучести 280-330 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1060-1090°С, температура конца прокатки - 880-910°С, температура смотки - 680-710°С, суммарное обжатие при холодной прокатке - 55,0-60,0%, температура отжига 810-830°С, температура замедленного охлаждения - 650-670°С, температура ускоренного охлаждения - 280-300°С, температура перестаривания - 270-290°С.

Для стали DP590 с пределом текучести 340-400 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1020-1050°С, температура конца прокатки - 860-890°С, температура смотки - 630-660°С, суммарное обжатие при холодной прокатке - 63,0-68,0%, температура отжига 800-820°С, температура замедленного охлаждения - 670-690°С, температура ускоренного охлаждения - 260-280°С, температура перестаривания - 250-270°С.

Для стали DP590 с пределом тек) чести 420-490 МПа температура нагрева заготовок под прокатку составляет 1220-1250°С, температура окончания прокатки в черновой группе клетей - 1020-1050°С, температура конца прокатки - 810-840°С, температура смотки - 550-580°С, суммарное обжатие при холодной прокатке - 55,0-70,0%, температура отжига 780-800°С, температура замедленного охлаждения - 670-690°С, температура ускоренного охлаждения - 260-280°С, температура перестаривания - 250-270°С.

Способ получения экономичной холоднокатаной стали DP590 с разным пределом текучести с указанным химическим составом отличается тем, что относительное удлинение контролируется на уровне 0,5±0,1%.

Способ позволяет получать из стали одного химического состава прокат класса прочности 590 с различными значениями предела текучести в зависимости от требований конкретного потребителя. Недостатком данного способа является невозможность получения свойств проката, соответствующих более высоким классам прочности, в частности, классу 780. Кроме того, при изменении предела текучести предел прочности остается неизменным, в то время как в соответствии с большей частью нормативных документов при переходе от одного класса прочности к другому большему значению предела текучести должен соответствовать и больший предел прочности.

(Заявка на изобретение CN 109182672 (A) В21В 1/26, C21D 1/26, C21D 6/00, C21D 8/02, C21D 9/52, С22С 38/02, С22С 38/04, С22С 38/06, С22С 38/12, опубликована 11.01.2019).

Известен способ производства экономичной холоднокатаной стали DP780 с различным пределом текучести. Согласно способу, холоднокатаную сталь DP780 с пределом текучести 400-440 МПа, 450-490 МПа и 510-580 МПа получают путем нагрева, горячей прокатки, травления и непрерывного отжига стальной заготовки. Сталь содержит компоненты, % маc.: С 0,10-0,16; Si≤0,05; Mn 1,80-2,10; Al 0,40-0,60; Cr 0,20-0,40; N≤0,005; Р≤0,008; S≤0,005, остальное Fe и другие неизбежные примеси.

Для стали DP780 с пределом текучести 400-440 МПа температура нагрева заготовок под прокатку составляет 1230-1270°С, температура окончания прокатки в черновой группе клетей - 1050-1090°С, температура конца прокатки - 890-920°С, температура смотки - 680-710°С, суммарное обжатие при холодной прокатке - 68,0-72,0%, температура отжига 810-830°С, температура замедленного охлаждения - 670-690°С, температура ускоренною охлаждения - 300-340°С, температура перестаривания - 280-320°С.

Для стали DP780 с пределом текучести 450-490 МПа температура нагрева заготовок под прокатку составляет 1200-1240°С, температура окончания прокатки в черновой группе клетей - 1000-1040°С, температура конца прокатки - 850-880°С, температура смотки - 650-680°С, суммарное обжатие при холодной прокатке - 63,0-66,0%, температура отжига 780-800°С, температура замедленного охлаждения - 660-680°С, температура ускоренного охлаждения - 280-330°С, температура перестаривания - 260-310°С.

Для стали DP780 с пределом текучести 510-580 МПа температура нагрева заготовок под прокатку составляет 1160-1200°С, температура окончания прокатки в черновой группе клетей - 1040-1080°С, температура конца прокатки - 860-890°С при обжатии ≥12%, температура смотки - 540-570°С, суммарное обжатие при холодной прокатке - 60,0-65,0%, температура отжига 770-790°С, температура замедленного охлаждения -630-650°С, температура ускоренного охлаждения - 230-280°С, температура перестаривания - 210-260°С.

Способ позволяет получать из стали одного химического состава прокат класса прочности 780 с различными значениями предела текучести в зависимости от требований конкретного потребителя. Недостатком данного способа является то, что при изменении предела текучести предел прочности остается неизменным, в то время как в соответствии с большей частью нормативных документов при переходе от одного класса прочности к другому большему значению предела текучести должен соответствовать и больший предел прочности. Данный способ не позволяет получить предел прочности 980 МПа и более. Кроме того, максимальное значение предела текучести, которое можно получить при использовании данного способа, составляет 580 МПа, что также ниже требований к пределу текучести для класса прочности 980 (не менее 590-600 МПа по разным нормативным документам).

(Заявка на изобретение CN108754307(A) C21D 1/26; C21D 8/02; С22С 38/02; С22С 38/06; С22С 38/38, опубликована 06.11.2018 - прототип).

Техническим результатом настоящего изобретения является обеспечение повышения пластичности, а также расширение технологических возможностей способа производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали путем получения из стали одинакового химического состава проката различных классов прочности 780, 980 и 1180.

Указанный технический результат достигается тем, что в способе производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали, включающем нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, согласно изобретению, нагревают заготовку из стали, содержащей следующие компоненты, % маc.:

Углерод 0,1-0,13

Кремний 0,02-0,40

Марганец 2,0-2,2

Хром 0,25-0,40

Молибден 0,10-0,30

Ниобий 0,015-0,025

Железо и неизбежные примеси остальное, обработка в агрегате непрерывного отжига включает нагрев до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом температуру отжига для получения проката класса прочности 780 назначают 700-720°С, проката класса прочности 980 - 770-790°С, проката класса прочности 1180 - 730-750°С, а скорость движения полосы в агрегате непрерывного отжига для проката классов прочности 780 и 1180 назначают в зависимости от толщины полос в соответствии с зависимостью:

где V - скорость движения полосы, м/мин, h - толщина проката, мм, 80 и -20 - эмпирические коэффициенты, м/мин, для проката класса прочности 980 - в соответствии с зависимостью:

где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и - 40 - эмпирические коэффициенты, м/мин.

Сущность изобретения заключается в том, что обеспечение необходимого комплекса механических свойств, включающего предел прочности, предел текучести и относительное удлинение, достигается использованием определенного химического состава двухфазной ферритно-мартенситной стали, единого для трех классов прочности, и способов получения холоднокатаного высокопрочного проката из нее, различающихся для разных классов прочности. Требуемый уровень прочностных характеристик достигается путем обеспечения содержания в стали таких элементов, как углерод, кремний, марганец, хром, молибден и ниобий в указанных выше пределах. Ограничение нижних пределов содержания указанных элементов определяется необходимостью обеспечения высокой прочности. Превышение верхних пределов содержания указанных элементов приводит к снижению пластичности.

При нагреве и выдержке холоднокатаного проката в агрегатах непрерывного отжига происходят следующие процессы - рекристаллизация холоднокатаного проката, полиморфное α→γ превращение, а также диффузионное перераспределение элементов между ферритом и аустенитом, Ключевым параметром обработки, определяющим условия и степень протекания указанных процессов, является температура отжига.

При отжиге в нижней части двухфазной ферритно-аустенитной области в интервале температур 700-720°С формируется двухфазная структура со сравнительно большой долей феррита - около 40-50%. Формирующийся при этом аустенит имеет высокое содержание углерода и при последующем охлаждении превращается в устойчивый мартенсит. Содержания мартенсита на уровне 50-60% достаточно для обеспечения прочностных характеристик, соответствующих классу прочности 780. Уменьшение температуры отжига ниже 700°С приводит к тому, что доля мартенсита в структуре оказывается недостаточной для обеспечения требуемой прочности. Увеличение температуры отжига более 720°С приводит к формированию избыточной для класса 780 доле мартенсита, что способствует получению завышенных значений прочностных характеристик и недостаточной пластичности.

При отжиге в интервале температур 730-750°С доля устойчивого прочного мартенсита с достаточно высоким содержанием углерода достигает 80% и более. Это позволяет обеспечить уровень свойств, соответствующий классу прочности 1180. Уменьшение температуры отжига ниже 730°С приводит к тому, что доля мартенсита в структуре оказывается недостаточной для обеспечения требуемой прочности. Увеличение температуры отжига более 750°С приводит к формированию избыточной для класса 1180 доле мартенсита, что способствует получению завышенных значений прочностных характеристик и недостаточной пластичности.

При отжиге в интервале температур 770-790°С снижается содержание углерода в аустените и, соответственно, в мартенсите, что уменьшает прочность мартенсита, а также его устойчивость против распада в процессе перестаривания. Получаемый при этом уровень свойств соответствует требованиям к классу прочности 980. Уменьшение температуры отжига ниже 770°С приводит к формированию близкой доли, но более высокоуглеродистого прочного мартенсита, присутствие которого в структуре снижает пластичность. Увеличение температуры отжига более 790°С приводит к существенному снижению устойчивости аустенита и, соответственно, формирующегося из него мартенсита. При этом прочностные характеристики становятся ниже уровня, требуемого для класса прочности 980.

Дополнительно повысить пластичность холоднокатаного проката за счет более полного протекания рекристаллизационных процессов можно путем использования сравнительно низких скоростей движения полосы в агрегатах непрерывного отжига, что особенно актуально для отжига при сравнительно низких температурах - не выше 750°С. Поэтому для проката классов прочности 780 и 1180 должны быть использованы более низкие скорости движения полосы, рассчитываемые по зависимости (1), чем для проката класса прочности 980, для которого скорости движения полосы должны быть рассчитаны по зависимости (2). Использование скоростей движения полосы выше, чем рассчитанные по зависимостям (1) и (2), не обеспечит требуемый уровень пластичности. Использование скоростей движения полосы ниже, чем рассчитанные по зависимостям (1) и (2), не приведет к дальнейшему повышению пластичности, но может привести к уменьшению прочностных характеристик ниже требуемого уровня. Кроме того, при этом снижается производительность.

Примеры конкретного выполнении способа

Два состава стали получены при лабораторной выплавке в вакуумной индукционной печи. В таблице 1 приведен химический состав стали.

Горячую прокатку полученных слитков на толщину 3 мм производили по режиму: температура нагрева 1150°С, температура окончания прокатки Ткп от 790 до 910°С. После окончания прокатки полосу охлаждали до температуры Тcм 650°С и далее выдерживали в печи, нагретой до такой же температуры, в течение 1 ч с последующим охлаждением с печью (имитация охлаждения смотанного рулона).

Полученные горячекатаные полосы подвергали травлению для удаления окалины и холодной прокатке на толщину 1,2 и 2 мм (суммарное обжатие 60 и 66%).

Из полученных холоднокатаных полос изготавливали образцы для проведения моделирующей термической обработки на исследовательском комплексе Gleebl 3800. Термическая обработка заключалась в нагреве до температуры отжига 670-813°С, выдержке при этой температуре в течение 200 с, замедленном охлаждении, ускоренном охлаждении (скорость охлаждения около 30°С/с) до температуры окончания ускоренного охлаждения и начала перестаривания в течение 550 с, и последующем охлаждении до комнатной температуры (скорость охлаждения около 10°С/с). Кроме температуры отжига варьировали скорость движения полосы - 45, 60, 100 и 120 м/мин. Натяжение соответствовало номинальным значениям.

При испытаниях на растяжение определяли основные механические характеристики предел текучести, предел прочности и относительное удлинение. В соответствии с требованиями EN 10338:2013 указанные характеристики к разработанной стали включают в себя:

- для проката класса прочности 780: предел прочности не ниже 780 МПа, относительное удлинение не менее 14%, предел текучести в диапазоне 440-550 МПа,

- для проката класса прочности 980: предел прочности не ниже 980 МПа, относительное удлинение не менее 10%, предел текучести в диапазоне 590-740 МПа,

- для проката класса прочности 1180: предел прочности не ниже 1180 МПа, относительное удлинение не менее 5%, предел текучести в диапазоне 900-1100 МПа.

В то же время потребители заинтересованы в получении более высоких значений относительного удлинения. Поэтому условно принимали, что высокая пластичность получена, когда относительное удлинение для проката класса прочности 780 составляет не менее 17%, для проката класса прочности 980 - 12%, для проката класса прочности 1180 - 7%.

Результаты механических испытаний сталей вариантов А и Б после моделирования отжига по различным режимам, соответствующим и не соответствующим формуле изобретения, с целью проверки возможности обеспечения уровня свойств проката классов прочности 780, 980 и 1180 приведены в таблице 2. Также в таблице приведены значения температуры отжига Тотж и скорости движения полосы V, рассчитанной по зависимостям (1) и (2). Выделены значения технологических параметров, не соответствующие формуле изобретения, а также значения механических свойств, не соответствующие указанным выше оптимальным значениям.

Для стали состава А, имеющей пониженное содержание углерода и марганца, при всех опробованных режимах не достигается требуемый уровень свойств - для большинства вариантов прочностные характеристики предел прочности получены ниже указанных в таблице 2 (варианты А1, А2, А4, А6, А7-А9, А12, А13, А14, А16, А18), а для части вариантов (A3, A3, А10, A11, А15, А17) и относительное удлинение оказалось ниже предъявляемых требований. Очевидно, что для гарантированного получения уровня свойств, соответствующего трем классам прочности 780, 980 и 1180, должны использоваться стали с химическим составом, соответствующим формуле изобретения.

Для стали состава Б требуемый уровень прочности и пластичности достигается при обработке образцов по режимам, соответствующим формуле изобретения (варианты Б1, Б2, Б7, Б8, Б9, Б10, Б15, Б16, Б17, Б18, Б23, Б24).

При температуре конца прокатки выше указанного диапазона для проката классов прочности 780 и 1180 снижается пластичность при повышении прочности (варианты Б3, Б19), а для проката класса прочности 980 прочностные характеристики становятся ниже требуемого уровня (вариант Б11). Если температура конца прокатки ниже описанной в формуле, для проката классов прочности 780 и 1180 снижается прочность (варианты Б4, Б20), а для проката класса прочности 980 снижается пластичность (вариант Б12).

При скорости движения полосы в агрегатах непрерывного отжига выше рассчитанной по зависимостям (1) и (2) не достигается требуемого уровня пластичности (варианты Б5, Б13, Б21). При скорости движения полосы ниже рассчитанной, наоборот, происходит уменьшение прочностных характеристик ниже требуемого уровня (варианты Б6, Б14, Б22).

Таким образом, на образцах холоднокатаного проката из стали заявленного состава требуемый для трех классов прочности 780, 980 и 1180 комплекс свойств обеспечивается при выполнении требований по режиму производства проката, изложенному в формуле изобретения.

Способ производства из двухфазной ферритно-мартенситной стали холоднокатаного высокопрочного проката, имеющего классы прочности 780, 980 и 1180, включающий нагрев заготовки, горячую прокатку, холодную прокатку и обработку в агрегате непрерывного отжига, отличающийся тем, что нагревают заготовку из стали, содержащей следующие компоненты, мас.%:

Углерод 0,11-0,13
Кремний 0,02-0,40
Марганец 2,0-2,2
Хром 0,25-0,40
Молибден 0,10-0,30
Ниобий 0,015-0,025
Железо и неизбежные примеси остальное,

причем в агрегате непрерывного отжига осуществляют нагрев проката до температуры отжига, выдержку, замедленное охлаждение, ускоренное охлаждение до температуры начала перестаривания и перестаривание, при этом для получения проката класса прочности 780 нагрев ведут до 700-720°С, класса прочности 980 до 770-790°С, а класса прочности 1180 до 730-750°С, причем скорость движения в агрегате непрерывного отжига для проката классов прочности 780 и 1180 устанавливают в зависимости от толщины полос в соответствии с зависимостью

где V - скорость движения проката, м/мин, h - толщина проката, мм, 80 и 20 - эмпирические коэффициенты, м/мин, а

для проката класса прочности 980 - в соответствии с зависимостью

где V - скорость движения полосы, м/мин, h - толщина проката, мм, 140 и 40 - эмпирические коэффициенты, м/мин.



 

Похожие патенты:

Изобретение относится к способу непрерывной разливки, включающему выпуск расплавленной стали из выпускных каналов погружного стакана при следующих условиях (A) и (B) и применение устройства для электромагнитного перемешивания (EMS) для создания в расплавленной стали противоположных друг другу потоков в направлении длинной стороны на обоих краях длинной стороны в области, имеющей глубину, обеспечивающую толщину затвердевшей оболочки от 5 до 10 мм, по меньшей мере в положении центра в направлении длинной стороны.
Изобретение относится к области металлургии. Для повышения предела текучести и предела прочности на растяжение способ производства листовой стали, обладающей микроструктурой, состоящей в долях площади из: от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита и от 30% до 60% суммарного количества отпущенного мартенсита и бейнита, включает получение холоднокатаной листовой стали, содержащей химический состав, мас.%: 0,18 ≤ С ≤ 0,25, 0,9 ≤ Si ≤ 1,8, 0,02 ≤ Al ≤ 1,0, при этом 1,00 ≤ Si + Al ≤ 2,35, 1,5 ≤ Mn ≤ 2,5, 0,010 ≤ Nb ≤ 0,035, 0,10 ≤ Cr ≤ 0,40, Fe и неизбежные примеси - остальное, отжиг листовой стали при температуре отжига TA в течение времени отжига tA с обеспечением структуры, содержащей от 50% до 80% аустенита и от 20% до 50% феррита, закалку листа при скорости охлаждения от 20°С/с до 50°С/с до температуры закалки QT от Ms - 50°С до Ms - 5°С, нагрев листа до температуры распределения РТ от 375°С до 450°С и выдержку листа при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 с, и охлаждение листа до комнатной температуры.

Изобретение относится к области металлургии, а именно к текстурированной электротехнической листовой стали, используемой в качестве материала железного сердечника для малошумных трансформаторов.

Изобретение относится к области металлургии. Для получения превосходных стабильных магнитных свойств в текстурированных электротехнических листовых сталях, произведенных из тонких слябов без использования компонентов, образующих ингибитор, способ производства текстурированной электротехнической листовой стали включает непрерывную разливку расплавленной стали для получения сляба, имеющего толщину в диапазоне от 25 до 100 мм, при этом расплавленная сталь характеризуется химическим составом, содержащим в мас.%: С от 0,002 до 0,100, Si от 2,00 до 8,00, Mn от 0,005 до 1,000, Al < 0,0100, N < 0,0050, S < 0,0050 и Se < 0,0050 и остаток Fe и неизбежные примеси, нагрев и горячую прокатку сляба для получения горячекатаной листовой стали, причем сляб нагревают при температуре в диапазоне от 1000 до 1300°С на протяжении от 10 до 600 секунд.

Изобретение относится к области металлургии. Для обеспечения превосходных магнитных свойств листа из электротехнической стали способ изготовления текстурированного стального листа включает формирование сляба, нагрев сляба до температуры от 1000°С до 1300°С в течение времени от 60 до 600 с, горячую прокатку сляба для получения горячекатаного стального листа, необязательно отжиг листа в зоне горячих состояний, холодную прокатку листа для получения холоднокатаного стального листа с конечной толщиной, первичный рекристаллизационный отжиг холоднокатаного листа, вторичный рекристаллизационный отжиг, причем в случае проведения отжига в зоне горячих состояний время для достижения 900°С от 400°С в процессе нагревания составляет 100 с и менее, и температура выдержки при отжиге составляет 950°С и более, а в случае отсутствия отжига в зоне горячих состояний холодную прокатку проводят по меньшей мере в две стадии с промежуточным отжигом между ними, при этом в процессе нагревания для первого промежуточного отжига время для достижения 900°С от 400°С составляет 100 с и менее, и температура выдержки при отжиге составляет 950°С и более.

Изобретение относится к области металлургии, а именно к текстурированному листу электротехнической стали, используемому в качестве материала железных сердечников трансформаторов.

Изобретение относится к области металлургии. Для обеспечения низких потерь в железе по первому варианту способа осуществляют горячую прокатку сляба из неориентированной электротехнической стали, содержащей, мас.%: C 0,0050 или менее, Si от 2,0 до 6,0, Mn от 1,0 до 3,0, P 0,20 или менее, S 0,0050 или менее, N 0,0050 или менее, Al 0,0050 или менее, Fe и неизбежные примеси – остальное, и имеющей нитриды Si-Mn со средним диаметром от 50 нм до 500 нм и численной плотностью 1/мкм3 или менее, охлаждение горячекатаного листа со средней скоростью 30°С/с или более в диапазоне температур от 800°С до 650°С, смотку в рулон при температуре 650°С, холодную прокатку по меньшей мере за один этап с промежуточным отжигом между этапами и окончательный отжиг.
Изобретение относится к области металлургии, а именно к стальному листу, используемому для изготовления горячей штамповкой конструктивных деталей автомобиля. Лист имеет структуру, содержащую бейнит, свежий мартенсит и мартенсит отпуск с долей площади 80% или более в сумме.

Изобретение относится к листовой стали, пригодной для использования в производстве автомобилей. Химический состав листовой стали с покрытием: 0,17% ≤ углерод ≤ 0,24%, 1,9% ≤ марганец ≤ 2,2%, 0,5% ≤ алюминий ≤ 1,2%, 0,5% ≤ кремний ≤ 1%, 0,05% ≤ хром ≤ 0,2%, 0,015% ≤ ниобий ≤ 0,03%, фосфор ≤ 0,03%, сера ≤ 0,004% и по усмотрению 0,005% ≤ титан 0,05%, 0,001% ≤ молибден 0,05%, остальное железо и неизбежные примеси в результате обработки.

Изобретение относится к области металлургии, в частности к производству толстолистового проката толщиной до 45 мм. Для обеспечения высокого уровня механических свойств проката категории прочности Х65-Х70, количества вязкой составляющей при температуре от -10 до -30°С не менее 85% и величины поглощенной энергии при температуре от - 20 до - 40°С не менее 180 Дж осуществляют аустенизацию заготовки из стали, содержащей, мас.%: С 0,02÷0,08, Si 0,10÷0,35, Mn 1,10÷2,00, Cr 0,01÷0,30, Ni 0,01÷0,50, Cu 0,01÷0,30, Mo не более 0,10, Al 0,02÷0,05, Nb 0,02÷0,06, V 0,001÷0,060, Ti 0,005÷0,030, S не более 0,0030, P не более 0,015, N 0,001÷0,008, Fe и неизбежные примеси - остальное, причем содержание марганца соответствует соотношению где Rm - временное сопротивление разрыву, Н/мм2, при этом температура аустенизации заготовки соответствует выражению после чего осуществляют черновую прокатку заготовки с последующей выдержкой подката, чистовую прокатку при температуре начала, соответствующей и конца при температуре получаемого листа, (ТКП±25)°С, при этом ТКП=(Ае3-0,031⋅h2+0,411⋅h-38), затем охлаждение полученного листа в установке контролируемого охлаждения со скоростью охлаждения 10,0÷25,0°С/с до 200÷550°С и последующее охлаждение листа отдельно или в стопе на воздухе.
Изобретение относится к области металлургии. Для повышения предела текучести и предела прочности на растяжение способ производства листовой стали, обладающей микроструктурой, состоящей в долях площади из: от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита и от 30% до 60% суммарного количества отпущенного мартенсита и бейнита, включает получение холоднокатаной листовой стали, содержащей химический состав, мас.%: 0,18 ≤ С ≤ 0,25, 0,9 ≤ Si ≤ 1,8, 0,02 ≤ Al ≤ 1,0, при этом 1,00 ≤ Si + Al ≤ 2,35, 1,5 ≤ Mn ≤ 2,5, 0,010 ≤ Nb ≤ 0,035, 0,10 ≤ Cr ≤ 0,40, Fe и неизбежные примеси - остальное, отжиг листовой стали при температуре отжига TA в течение времени отжига tA с обеспечением структуры, содержащей от 50% до 80% аустенита и от 20% до 50% феррита, закалку листа при скорости охлаждения от 20°С/с до 50°С/с до температуры закалки QT от Ms - 50°С до Ms - 5°С, нагрев листа до температуры распределения РТ от 375°С до 450°С и выдержку листа при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 с, и охлаждение листа до комнатной температуры.

Изобретение относится к текстурированной электротехнической листовой стали и способу производства текстурированной электротехнической листовой стали. Текстурированная электротехническая листовая сталь включает листовую сталь, покрытие, которое располагается на листовой стали и содержит элемент, слой покрытия А, которым является керамическое покрытие, характеризующееся уровнем содержания оксида, составляющим менее чем 30% (мас.), и слой покрытия В, которым является изоляционное придающее натяжение покрытие, содержащее оксид, и который располагается на слое покрытия А, где покрытие имеет толщину в диапазоне 1,0-10,0 нм, и в покрытии степень атомного радиуса, описывающаяся формулой (1), составляет по меньшей мере 10% при обозначении атомного радиуса железа символом RFe, а атомного радиуса указанного элемента символом RA.

Изобретение относится к области металлургии. Для обеспечения превосходных магнитных свойств листа из электротехнической стали способ изготовления текстурированного стального листа включает формирование сляба, нагрев сляба до температуры от 1000°С до 1300°С в течение времени от 60 до 600 с, горячую прокатку сляба для получения горячекатаного стального листа, необязательно отжиг листа в зоне горячих состояний, холодную прокатку листа для получения холоднокатаного стального листа с конечной толщиной, первичный рекристаллизационный отжиг холоднокатаного листа, вторичный рекристаллизационный отжиг, причем в случае проведения отжига в зоне горячих состояний время для достижения 900°С от 400°С в процессе нагревания составляет 100 с и менее, и температура выдержки при отжиге составляет 950°С и более, а в случае отсутствия отжига в зоне горячих состояний холодную прокатку проводят по меньшей мере в две стадии с промежуточным отжигом между ними, при этом в процессе нагревания для первого промежуточного отжига время для достижения 900°С от 400°С составляет 100 с и менее, и температура выдержки при отжиге составляет 950°С и более.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении конструктивных компонентов горячей штамповкой. Инструмент содержит источник тока и штамп, включающий верхний и нижний сопрягающиеся штампы.

Изобретение относится к листовой стали, пригодной для использования в производстве автомобилей. Химический состав листовой стали с покрытием: 0,17% ≤ углерод ≤ 0,24%, 1,9% ≤ марганец ≤ 2,2%, 0,5% ≤ алюминий ≤ 1,2%, 0,5% ≤ кремний ≤ 1%, 0,05% ≤ хром ≤ 0,2%, 0,015% ≤ ниобий ≤ 0,03%, фосфор ≤ 0,03%, сера ≤ 0,004% и по усмотрению 0,005% ≤ титан 0,05%, 0,001% ≤ молибден 0,05%, остальное железо и неизбежные примеси в результате обработки.

Изобретение относится к области металлургии, а именно к горячекатаному стальному листу, используемому для изготовления непрерывных гибких труб (колтюбинга). Горячекатаный лист имеет состав, содержащий, мас.%: С более 0,10 до 0,16, Si 0,1-0,5, Mn 1,6-2,5, P 0,02 или менее, S 0,005 или менее, Al 0,01-0,07, Cr более 0,5 до 1,5, Cu 0,1-0,5, Ni 0,1-0,3, Мо 0,1-0,3, Nb 0,01-0,05, V 0,01-0,10, Ti от 0,005 до 0,05, N 0,005 или менее, остальное Fe и неизбежные примеси.

Изобретение относится к области металлургии и машиностроения. Для повышения ударной вязкости при сохранении высокой прочности стальных деталей способ производства закаленной прессованной детали включает первый процесс термической обработки, содержащий нагрев заготовочного стального материала до температуры выше точки превращения Ac3 для аустенитного превращения, а затем охлаждение для мартенситного превращения или бейнитного превращения, и второй процесс термической обработки, содержащий нагрев стального материала, который подвергся первому процессу термической обработки, до температуры выше точки превращения Ac3 для аустенитного превращения, а затем охлаждение для мартенситного превращения.

Изобретение относится к области металлургии. Для обеспечения превосходной пластичности и способности к изгибу горячепрессованная деталь имеет заранее определенный химический состав, причем микроструктура на участке 1/4 по толщине этой детали включает, в об.%: 20 - 90 отпущенного мартенсита, 5 - 75 бейнита и 5 - 25 остаточного аустенита, при этом феррит ограничен уровнем 10% или менее, и полюсная плотность ориентации {211}<011> на участке 1/4 по толщине составляет 3,0 или более.

Изобретение относится к способам получения холоднокатаной или горячекатаной стальной полосы из высокопрочной, закаливающейся на воздухе, многофазной стали, причем суммарное содержание (Mn+Si+Cr) в стали регулируется в соответствии с полученной толщиной полосы: вплоть до 1,00 мм сумма (Mn+Si+Cr) ≥ 2,350 и ≤ 2,500 мас.%; больше 1,00 и вплоть до 2,00 мм сумма (Mn+Si+Cr) > 2,500 и ≤ 2,950 мас.%, а больше 2,00 мм, сумма (Mn+Si+Cr) > 2,950 и ≤ 3,250 мас.%.

Изобретение относится к области металлургии. Для обеспечения пониженной восприимчивости к разрушению стального пластинчатого элемента способ включает нагрев стального пластинчатого элемента до температуры, превышающей конечную температуру превращения аустенита, и последующее охлаждение со скоростью выше критической скорости охлаждения, затем локальный нагрев и охлаждение пластинчатого элемента с созданием второй области, имеющей твердость ниже твердости первой области пластинчатого элемента.
Изобретение относится к области металлургии. Для повышения предела текучести и предела прочности на растяжение способ производства листовой стали, обладающей микроструктурой, состоящей в долях площади из: от 20% до 50% межкритического феррита, от 10% до 20% остаточного аустенита, от 25% до 45% отпущенного мартенсита, от 10% до 20% свежего мартенсита и бейнита и от 30% до 60% суммарного количества отпущенного мартенсита и бейнита, включает получение холоднокатаной листовой стали, содержащей химический состав, мас.%: 0,18 ≤ С ≤ 0,25, 0,9 ≤ Si ≤ 1,8, 0,02 ≤ Al ≤ 1,0, при этом 1,00 ≤ Si + Al ≤ 2,35, 1,5 ≤ Mn ≤ 2,5, 0,010 ≤ Nb ≤ 0,035, 0,10 ≤ Cr ≤ 0,40, Fe и неизбежные примеси - остальное, отжиг листовой стали при температуре отжига TA в течение времени отжига tA с обеспечением структуры, содержащей от 50% до 80% аустенита и от 20% до 50% феррита, закалку листа при скорости охлаждения от 20°С/с до 50°С/с до температуры закалки QT от Ms - 50°С до Ms - 5°С, нагрев листа до температуры распределения РТ от 375°С до 450°С и выдержку листа при температуре распределения РТ в течение времени распределения Pt, составляющего по меньшей мере 50 с, и охлаждение листа до комнатной температуры.
Наверх