Микродиспергатор для генерирования капель



Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель
Микродиспергатор для генерирования капель

Владельцы патента RU 2718617:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет) (RU)

Изобретение относится к микродиспергаторам, в которых генерируются микрокапли преимущественно сферической формы нанолитрового и субнанолитрового объема, и далее сгенерированные капли могут быть использованы в химических, фармацевтических и других технологиях, в том числе для проведения массообменных процессов и химических реакций между реагентами, растворенными в каплях, либо растворенными в каплях и в сплошной среде, а также для последующего нанесения биологически активных веществ на поверхности сформированных капель. Сущность изобретения заключается в том, что в микродиспергаторе для генерирования капель одной жидкости в другой с узким дисперсным составом, включающем корпус в виде канала протяженной формы, присоединенный к корпусу соосно ему патрубок для ввода дисперсной фазы, и присоединенные к боковой поверхности корпуса один или более патрубков для ввода сплошной фазы, поперечное сечение канала от среза патрубка для ввода дисперсной фазы выполнено периодически изменяющимся, при этом внутренний размер h узкой части канала выполнен в соответствии с расчетной формулой

где d - средний размер капель, которые необходимо сгенерировать в микродиспергаторе, м;

Q1 - расход дисперсной фазы, м3/с;

Q2 - расход сплошной фазы, м3/с,

а внутренний размер Н широкой части канала выполнен в соответствии с расчетной формулой:

при этом пространственный период λ между соседними волнами в периодически изменяющейся структуре корпуса выполнен в соответствии с расчетной формулой

Причем в микродиспергаторе число волн в периодически изменяющейся структуре корпуса составляет от 3 до 7. Устройство позволяет сформировать в жидкости в микроканалах сферические капли (микросферы) с размерами, распределенными в достаточно узком диапазоне, а также обеспечить равное расстояние между соседними каплями, что позволит предотвратить их столкновение и последующую коалесценцию. Технический результат заключается в повышении универсальности устройства и возможности его применимости для процессов с различными параметрами (физико-химическими свойствами сред и расходами компонентов) за счет того, что изобретение позволяет расширить диапазон расходов сплошной и дисперсной фаз, при котором гарантировано получение сферических капель заданных размеров в результате распада струи дисперсной фазы. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к микродиспергаторам, в которых генерируются микрокапли преимущественно сферической формы нанолитрового и субнанолитрового объема, и далее сгенерированные капли могут быть использованы в химических, фармацевтических и других технологиях, в том числе для проведения массообменных процессов и химических реакций между реагентами, растворенными в каплях, либо растворенными в каплях и в сплошной среде, а также для последующего нанесения биологически активных веществ на поверхности сформированных капель.

Известно устройство для диспергирования капель или пузырей в микроканалах и проведения массообменных и реакционных процессов в системах жидкость-жидкость и жидкость-газ (МПК7 С01В 3/26, С07С 5/03, С07С 5/00, С07С 5/10, пат. США №6632414, 2003 г.). Аппарат содержит корпус протяженной формы с установленным в нем монолитным катализатором, состоящим из большого числа микроканалов, расположенных параллельно друг другу, патрубки для ввода исходных компонентов в корпус, устройство для диспергирования газа. В микроканалы подают газ и жидкость (либо две несмешивающиеся жидкости). В аппарате с монолитным катализатором в зависимости от соотношения расходов газа и жидкости может быть реализован один из следующих основных режимов течения: пузырьковый, снарядный, эмульсионный и пленочный (кольцевой).

В известном изобретении не предусмотрены меры по формированию капель или пузырей дисперсной фазы с заданными размерами. Это приводит к тому, что в каждом из каналов формируются пузыри с большим разбросом размеров. В итоге значительная часть микроканалов функционирует с показателями (коэффициентами тепло- и массообмена), существенно ниже расчетных значений, полученных исходя из предположения об идеальной картине формирования двухфазного потока в микроканалах.

Известно устройство - аналог предлагаемого изобретения - Т-образный смеситель (T-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем передавливания формирующегося в смесителе пузыря (капли). При этом пузырь (капля) формируется в узком микроканале, обтекаясь потоком жидкости - сплошной фазы, движущейся в виде тонкой пленки. На процесс формирования пузыря (капли) влияет большое количество факторов: касательные напряжения на его поверхности, перепад давления между лобовой и тыльной частями пузыря (капли), силы поверхностного натяжения на границе отверстия, из которого истекает пузырь (капля), а также межфазное натяжение на поверхности микроканала, которое может быть асимметричным ввиду различия углов натекания и оттекания в лобовой и тыльной частях пузыря (капли). Сложная гидродинамическая обстановка вокруг формирующегося пузыря (капли), а также влияние на него близости стенок микроканала и их шероховатости предопределяет существенную нестабильность условий получаемых пузырей (капель) и их размеров, равно как и размеров жидкостных снарядов между ними. Все это, как указывалось выше, обуславливает ухудшение стабильности размеров генерируемых капель.

Известно устройство - аналог предлагаемого изобретения - Y-образный смеситель (Y-mixer) (Ребров Е.В. Режимы двухфазного течения в микроканалах // Теорет. основы хим. технологии, 2010, т. 44, №4, стр. 371-383), для которого характерен способ формирования пузырей (либо капель) путем вытягивания и отрыва пузыря (капли). Большое количество влияющих условий и близость стенки микроканалов и в этом случае обуславливают нестабильность размеров получаемых пузырей (капель). Таким образом, и в Y-образном смесителе складываются неблагоприятные условия для управления размерами элементов дисперсной и сплошной фазы, а значит, и показателями эффективности работы оборудования.

Наиболее близким по технической сущности к предлагаемому нами устройству является микродиспергатор, интегрированный с микрореактором (Ueno М., Hisamoto Н., Kitamori Т., Kobayashi S. Phase-transfer alkylation reactions using microreactors// Chem. Commun., 2003, pp. 936-937; Wegmann A., von Rohr P.R. Two phase liquid-liquid flows in pipes of small diameters// International Journal of Multiphase Flow, V. 32, 2006, pp. 1017-1028) представляющий собой трубку с поперечным диаметром от 100-200 мкм до 7 мм, ввод фаз в которую осуществляется либо под прямым углом (Т-образный смеситель), либо под острым углом примерно 30° (Y-образный смеситель).

К недостаткам известного устройства относятся невозможность регулировать условия диспергирования. Как и в устройствах-аналогах, в данном устройстве (в Т-образном и в Y-образном смесителях) складываются неблагоприятные условия для формирования размеров элементов дисперсной и сплошной фазы (капель и пузырей) и управления ими. Это приводит к ограничению области применения устройства узкими диапазонами расходов сплошной и дисперсной фаз, поскольку при изменении расходов существенно изменяется гидродинамическая обстановка в аппарате и нарушается режим течения двухфазной смеси.

Кроме того, исследования показали (R.K. Shah, Н.С. Shum, А.С. Rowata, D. Lee, J.J. Agresti, A.S. Utada, L.-Y. Chu, J.-W. Kim, A. Fernandez-Nieves, C.J. Martinez, D.A. Weitz, Designer emulsions using microfluidics, Materials today, 2008, V. 11, N. 4, pp. 18-27; S. K. Luther, A. Braeuer, High-pressure microfluidics for the investigation into multi-phase systems using the supercritical fluid extraction of emulsions (SFEE), The Journal of Supercritical Fluids, 2012, V. 65, pp. 78-86; W. Wang, M.-J. Zhang, L.-Y. Chu, Functional Polymeric Microparticles Engineered from Controllable Microfluidic Emulsions. Accounts of chemical research, 2014, Vol. 47, No. 2, 373-384), что при использовании Y-образного смесителя (и его трехмерных аналогов) мелкие капли (микросферы образуются в результате вытягивания довольно длинной струи с образованием на ее конце утолщения, последующим ростом и отрывом данного утолщения в виде капли. Длина струи до момента ее отрыва зависит от соотношения вязкостей сред и при высокой вязкости дисперсной фазы может достигать 30-60 калибров микроканала до начала отрыва.

В работе (Т. Cubaud, T.G. Mason Capillary threads and viscous droplets in square microchannels. Physics of Fluids 20, 053302 (2008); https://doi.org/10.1063/1.2911716) показано, что длина струи L0 (м) до начала распада на капли может быть рассчитана по формуле

где С - безразмерный коэффициент, имеющий порядок единицы;

μ1 - коэффициент динамической вязкости дисперсной фазы, Па⋅с;

h - внутренний размер канала, м;

σ - коэффициент межфазного натяжения на границе раздела фаз, Н/м;

Q1 - расход дисперсной фазы, м3/с;

Q2 - расход сплошной фазы, м3/с.

Экспериментально выявлено (Т. Cubaud, T.G. Mason Capillary threads and viscous droplets in square microchannels. Physics of Fluids 20, 053302 (2008)), что длина струи L0 до ее распада на капли в 30-60 раз превышает ее диаметр, что согласуется с расчетом по формуле (а). В результате приходится неоправданно увеличивать длину микродиспергатора. На фоне стремления к уменьшению общих размеров устройства в целом, включающего, при проведении химической реакции, помимо диспергатора, еще микрореакторную и сепарационную части, непомерное увеличение длины микродиспергатора приводит к увеличению его габаритов, что ухудшает преимущества микромасштабного устройства. Более того, при некотором отклонении от предельных расходов, обеспечивающих диспергирование капель, струя может и вовсе не распасться на капли на обозримой длине, приводя к нарушению режима работы всего устройства, а размер формируемых капель находится в довольно широких пределах.

Задача предлагаемого изобретения заключается в формировании в жидкости в микроканалах сферических капель (микросфер) с размерами, распределенными в достаточно узком диапазоне, а также обеспечение равного расстояния между соседними каплями, что позволит предотвратить их столкновение и последующую коалесценцию.

Кроме того, задачей предлагаемого изобретения является расширение диапазонов расходов сплошной и дисперсной фаз, при котором гарантировано получение сферических капель заданных размеров в результате распада струи дисперсной фазы, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами (физико-химическими свойствами сред и расходами компонентов).

Поставленная задача достигается тем, что в микродиспергаторе для генерирования капель одной жидкости в другой с узким дисперсным составом, включающий корпус в виде канала протяженной формы, присоединенный к корпусу соосно ему патрубок для ввода дисперсной фазы, и присоединенные к боковой поверхности корпуса один или более патрубков для ввода сплошной фазы, отличающийся тем, что поперечное сечение канала от среза патрубка для ввода дисперсной фазы выполнено периодически изменяющимся, при этом внутренний размер h узкой части канала выполнен в соответствии с расчетной формулой:

где d - средний размер капель, которые необходимо сгенерировать в микродиспергаторе, м;

Q1 - расход дисперсной фазы, м3/с;

Q2 - расход сплошной фазы, м3/с,

а внутренний размер Н широкой части канала выполнен в соответствии с расчетной формулой:

при этом пространственный период λ между соседними волнами в периодически изменяющейся структуре корпуса выполнен в соответствии с расчетной формулой:

Поставленная задача достигается также тем, что в микродиспергаторе число волн в периодически изменяющейся структуре корпуса составляет от 3 до 7.

Предлагаемое устройство может быть выполнено как в планарной (2D), так и в трехмерной (3D) геометрии.

Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.

На фиг. 1 изображена схема микродиспергатора в нерабочем состоянии (до подачи в него жидкостей), на фиг. 2 - схема микродиспергатора и картина течения двухфазной смести при подаче в него сплошной и дисперсной фаз.

На фиг. 1 изображен предлагаемый микродиспергатор для генерирования капель одной жидкости в другой с узким дисперсным составом, включающий корпус 1 в виде канала 2 протяженной формы, присоединенный к корпусу 1 соосно ему патрубок 3 для ввода дисперсной фазы, и присоединенные к боковой поверхности корпуса 1 один или более патрубков 4 для ввода сплошной фазы. При этом поперечное сечение канала 2 от среза 5 патрубка 3 для ввода дисперсной фазы выполнено периодически изменяющимся, т.е. представляет собой периодическую структуру в виде волн, имеющих форму, близкую к синусоидальной, с длиной волны λ, определяемой по формуле (3). Форма волн в общем случае может быть и иной (например, в виде соединенных последовательно конических конфузоров и диффузоров, или цилиндрических участков, имеющих ступенчатые переходы), но исследования показали, что форма, близкая к синусоидальной, обладает оптимальными характеристиками: наиболее быстрым отрывом капель от струи жидкости при минимальном гидравлическом сопротивлении микродиспергатора.

Канал может быть выполнен периодически изменяющимся по всей длине, но достаточно от 3 до 7 волн, поскольку при большем количестве волн возрастают потери давления, а при числе волн меньше 3 не достигается значительный эффект. За участком канала с периодически изменяющейся геометрией следует участок 6 с постоянным сечением, в котором происходит окончательное формирование сферических капель и их перемещение с потоком сплошной фазы по направлению к емкости-сборнику (на фиг. 1 не показана). Форма поперечного сечения патрубка 3 предпочтительно круглая.

Внутренний размер h узкой части канала 2 выполнен в соответствии с расчетной формулой (1), а форма поперечного сечения может быть круглой или прямоугольной (в последнем случае - преимущественно квадратной). Значения коэффициентов в формулах (1) и (3) в диапазоне 0,30-0,34 и 5,4-5,8 соответственно характеризуют погрешности экспериментального определения данных величин и на получаемый эффект не влияют. В среднем длина волны, согласно формуле (3), равна λ ≈ 5,6 d.

Внутренний размер Н широкой части канала 2 выполнен в соответствии с расчетной формулой (2). Коэффициент в формуле (2) в интервале 1,5-3,0 определяет оптимальную эффективность работы предлагаемого устройства: При меньших значениях (Н <1,5 h) волны оказывают недостаточно сильное воздействие на струю дисперсной фазы. При больших значениях (Н >3,0 h) в широких частях (углублениях) канала 2 возникают застойные зоны с вторичными токами, что приводит к снижению эффективности устройства.

На фиг. 2 показана схема микродиспергатора в рабочем состоянии и картина течения двухфазной смести при подаче в него сплошной (с расходом Q2) и дисперсной (с расходом Q1) фаз.

Предлагаемый микродиспергатор работает следующим образом.

При подаче насосами (на фиг. 1 и 2 условно не показаны) сплошной и дисперсной фаз в патрубки 4 и 3 соответственно с расходами Q2 и Q1 из выходного сечения (среза 5) патрубка 3 в канал 2 в виде струи 7 истекает дисперсная фаза. Струя 7 на начальном участке имеет цилиндрическую форму. Благодаря периодически изменяющейся по длине форме канала 2 с длиной волны λ, определяемой по формуле (3), и размерами канала, определяемыми формулами (1) и (2), в результате возникающих вдоль длины канала 2 пульсаций давления, скорости и касательных напряжений происходит интенсивное сжатие-расширение струи, на поверхности струи 7 образуются капиллярные волны с зонами расширения 8 и сужения 9. В результате такого воздействия сплошной фазы на дисперсную ускоряется развитие капиллярной неустойчивости струи, через 3-7 волн зоны расширения увеличиваются в размерах с образованием оконечной капли 10 с ее последующим отрывом от струи 7. Далее капля 10 уносится потоком сплошной фазы в участок 6 с постоянным сечением канала 2, в котором происходит окончательное формирование сферических капель 11 и их перемещение с потоком сплошной фазы по направлению к емкости-сборнику.

При этом благодаря пульсациям, возникающим в канале вдоль линий тока при движении двухфазной среды, отрыв капель происходит не случайным образом, как в известных устройствах, а в периодическом режиме. В результате в жидкости (в сплошной фазе) в микроканалах формируются сферические капли (микросферы) с размерами, распределенными в узком диапазоне. По этой же причине между соседними каплями создается равное расстояние, что позволяет предотвратить их столкновение и последующую коалесценцию.

Предлагаемое устройство иллюстрируется следующими примерами

ПРИМЕР 1. Генерирование микросфер в предлагаемом устройстве с оптимальными параметрами.

Микродиспергатор изготовлен из латуни, с крышкой из минерального стекла согласно схеме, показанной на фиг. 1. Для стабилизации сгенерированных капель в сплошную фазу добавлялось небольшое количество поверхностно-активного вещества.

При подаче сплошной фазы (воды) и дисперсной фаз (трансформаторного масла) в патрубки 4 и 3 микродиспергатора соответственно с расходами Q2=16 мл/мин и Q1=2 мл/мин из выходного патрубка 3 в канал 2 вытекает дисперсная фаза в виде струи 7. Канал 2 выполнен с размерами, в соответствии с формулами (1)-(3):

- внутренний размер h узкой части канала выполнен равным 0,064 мм (в интервале от 0,060 до 0,068 мм, согласно формуле (1));

- внутренний размер Н широкой части канала выполнен равным 0,144 мм (в интервале от 0,096 до 0,192 мм, согласно формуле (2));

- пространственный период между λ соседними волнами в периодически изменяющейся структуре корпуса выполнен равным 0,28 мм (в интервале от 0,27 до 0,28 мм, согласно формуле (3)).

На поверхности струи 7 образуются капиллярные волны с зонами расширения 8 и сужения 9, через 3-4 волны от струи 7 отрываются капли 10.

Аналогичные опыты были проведены на нижнем и верхнем пределах интервалов коэффициентов, указанных в формулах (1)-(3).

Измерения, выполненные по микрофотографиям устройства с потоком, показали, что длина струи до момента распада на капли составила в среднем L1=0,98 мм, а диаметр струи был равен dc1=0,017 мм.

Число калибров струи до ее распада на капли при этом составило N1=L1/dc1=57.

Анализ микрофотографий капель (объем выборки в каждом опыте составлял 600-800 капель) оказался в интервале от 47,2 до 53,2 мкм, со средним значением диаметра микросфер d=50,2 мкм и средним квадратическим отклонением S=1,0 мкм; коэффициент вариации размеров капель (микросфер) при этом составил V=S/d =0,02. Между сгенерированными соседними каплями создается равное расстояние, примерно равное их диаметру, и они движутся в потоке сплошной среды без столкновения и последующей коалесценции.

Аналогичные результаты были получены при диспергировании капель стирола в водный раствор NaCl.

ПРИМЕР 2. Генерирование микросфер в предлагаемом устройстве с неоптимальными параметрами.

Исследования процесса генерирования микросфер проводились в устройстве, описанном в Примере 1, по той же методике. Отличие заключалось в том, что внутренний размер h узкой части, внутренний размер Н широкой части канала, пространственный период λ между соседними волнами выполнялись за пределами интервалов, указанных в расчетных формулах (1)-(3).

Эксперименты показали, что во всех случаях происходит ухудшение стабильности размеров капель (микросфер), коэффициент вариации существенно возрастает и достигает значений V=0,04-0,05.

Таким образом, коэффициенты, указанные в расчетных формулах (1)-(3), базируются на результатах экспериментальных исследований, и характеризуют оптимальные значения размеров канала 2.

При увеличении числа волн в периодически изменяющейся структуре корпуса более 7 происходило чрезмерное возрастание гидравлического сопротивления устройства, без улучшения эффекта.

При уменьшении числа волн в периодически изменяющейся структуре корпуса менее 3 происходило эффект диспергирования был недостаточно высоким, наблюдался повышенный разброс размеров капель по сравнению с числом волн от 3 до 7. Базовый вариант иллюстрируется следующим примером

ПРИМЕР 3. Генерирование микросфер в устройстве-прототипе.

Генерирование микросфер осуществлялась (Т. Cubaud, T.G. Mason Capillary threads and viscous droplets in square microchannels. Physics of Fluids 20, 053302 (2008)) при тех же условиях, что и в Примере 1. Анализ двухфазного течения и полученных микросфер осуществлялся теми же методами.

Измерения показали, что длина струи до момента распада на капли составила L0=17,7 мм при диаметре струи dc0=0,017 мм.

Число калибров струи до ее распада на капли при этом составило N0=L0/dc0=1026, т.е. в 18 раза больше, чем для предлагаемого устройства.

Анализ микрофотографий капель (объем выборки в каждом опыте составлял 600-800 капель) оказался в интервале от 32,2 до 69,5 мкм, со средним значением диаметра микросфер d=50,9 мкм и средним квадратическим отклонением S=6,2 мкм; коэффициент вариации размеров капель (микросфер) при этом составил V=S/d=0,122, что существенно выше, чем в предлагаемом устройстве, даже при его работе в неоптимальных режимах.

Расстояние между сгенерированными соседними каплями создается равное, варьируется в пределах от 0,2 d до 1,3 d, они часто сталкиваются, что приводит к их последующей коалесценции.

Таким образом, предлагаемое устройство позволяет сгенерировать в микроканалах сферические капли (микросферы) с размерами, распределенными в достаточно узком диапазоне, а также обеспечить равного расстояния между соседними каплями, что позволит предотвратить их столкновение и последующую коалесценцию. При вариации размеров канала в пределах, указанных в расчетных формулах (1)-(3), сохраняются стабильно узкое распределение размера капель и расстояния между ними, что приводит к повышению универсальности устройства и возможности его применимости для процессов с различными параметрами (физико-химическими свойствами сред и расходами компонентов).

1. Микродиспергатор для генерирования капель одной жидкости в другой с узким дисперсным составом, включающий корпус в виде канала протяженной формы, присоединенный к корпусу соосно ему патрубок для ввода дисперсной фазы, и присоединенные к боковой поверхности корпуса один или более патрубков для ввода сплошной фазы, отличающийся тем, что поперечное сечение канала от среза патрубка для ввода дисперсной фазы выполнено периодически изменяющимся, при этом внутренний размер h узкой части канала выполнен в соответствии с расчетной формулой

где d - средний размер капель, которые необходимо сгенерировать в микродиспергаторе, м;

Q1 - расход дисперсной фазы, м3/с;

Q2 - расход сплошной фазы, м3/с,

а внутренний размер Н широкой части канала выполнен в соответствии с расчетной формулой

при этом пространственный период λ между соседними волнами в периодически изменяющейся структуре корпуса выполнен в соответствии с расчетной формулой

2. Микродиспергатор по п. 1, отличающийся тем, что число волн в периодически изменяющейся структуре корпуса составляет от 3 до 7.



 

Похожие патенты:

Предложен наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%: алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19, и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, где алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок.

Изобретение относится к области каталитической химии, а именно разработке никелевого катализатора гидрирования аренов в наноразмерных системах, которое может быть использовано в химической промышленности, в частности при производстве циклогексана, циклогексанола, циклогесиламина и других продуктов гидрирования.

Изобретение описывает способ регулирования содержания кислорода в высокооктановом компоненте моторного топлива на основе карбонильных соединений общей формулы, где R1 - Н, либо алкоксид -O-CnH2n+1, либо углеводородный радикал общей формулы -CnH2n+1; R2 - углеводородный радикал общей формулы -CnH2n+1; n - число от 1 до 5 или их смеси, и регулирования химической стабильности этого компонента топлива, заключающийся в том, что карбонильные соединения указанной выше общей формулы или их смесь в газовой фазе в избытке водорода пропускают над слоем композита, состоящего из механической смеси катализатора гидрирования и катализатора дегидратации, при температуре 100-400°С и давлении 1-100 атм.

Изобретение относится к катализатору, способу его получения и к способам гидрирования органического соединения в присутствии указанного катализатора. Предложен дисперсный катализатор для гидрирования и дегидрирования в форме частиц, имеющих минимальный размер по меньшей части 0,8 мм, включающий переходный металл или его соединение, диспергированный на материале пористого носителя.

Изобретение относится к катализатору гидрирования, содержащему соединение никеля (II), восстановитель и модифицирующую добавку. При этом в качестве исходного соединения никеля (II) используют кристаллогидрат бис(ацетилацетоната) никеля (II) состава Ni(acac)2·xH2O, где x=0,01-3,0, в качестве восстановителя - триэтилалюминий, а в качестве модифицирующей добавки - кетоны, эфиры и спирты при следующем соотношении компонентов: Ni(acac)2/H2O/AlEt3/модификатор=1:0,5-3,0:1-10:1-100.
Изобретение относится к способу регенерации отработанного никельсодержащего катализатора гидрирования непредельных углеводородов, состоящего из никеля Ренея и оксида алюминия.
Изобретение относится к способу получения катализатора метанирования углекислоты на основе биметаллического нитрида Ni2Mo3N. В предлагаемом способе осуществляют стадию выпаривания никеля и молибдена из совместного раствора, содержащего нитрат никеля и молибденовокислый аммоний, затем ведут стадию термохимической обработки осадка в токе водорода и его пассивацию.

Изобретение относится к способу производства компонента топлива из биоизопреновой композиции. Способ включает в себя химическое преобразование изопрена в биоизопреновой композиции до неизопреновых соединений посредством: (a) нагревания биоизопреновой композиции или воздействия на нее каталитическими условиями, подходящими для димеризации изопрена с образованием димера изопрена с последующей каталитической гидрогенизацией этого димера изопрена с образованием С10-насыщенного компонента топлива; или (b) (i) частичной гидрогенизации биоизопреновой композиции для производства изоамилена, (ii) димеризации изоамилена с моноолефином, выбранным из группы, состоящей из изоамилена, пропилена и изобутена, с образованием двойного соединения и (iii) полной гидрогенизации этого двойного соединения с получением компонента топлива.

Предложен способ приготовления регенерированного катализатора гидроочистки путем регенерации отработанного катализатора гидроочистки в заданном интервале температур, где заданным интервалом температур является интервал температур от Т1 - 30°С или более до Т2 + 30°С или менее, которые определены путем проведения дифференциального термического анализа отработанного катализатора гидроочистки, преобразования дифференциальной теплоты в интервале измерения температуры от 100°С или более до 600°С или менее в разность электродвижущей силы, двукратного дифференцирования преобразованного значения по температуре для того, чтобы получить наименьшее экстремальное значение и второе наименьшее экстремальное значение, и представления температуры, соответствующей экстремальному значению на стороне более низких температур, как Т1, и температуры, соответствующей экстремальному значению на стороне более высоких температур, как Т2.

Изобретение относится к области катализа. Описаны способы приготовления предшественника катализатора, включающие на первой стадии приготовления пропитку частиц носителя для катализатора органическим соединением кобальта в пропиточной жидкости с образованием пропитанного промежуточного продукта, прокаливание пропитанного промежуточного продукта при температуре прокаливания не выше 400°C с получением прокаленного промежуточного продукта; и затем на второй стадии приготовления пропитку прокаленного промежуточного продукта первой стадии неорганической солью кобальта в пропиточной жидкости с образованием пропитанного носителя и прокаливание пропитанного носителя с получением предшественника катализатора, причем ни одну из неорганических солей кобальта, использованных на второй стадии приготовления, не используют на первой стадии приготовления.

Изобретение относится к способу изомеризации углеводородного сырья, содержащего углеводородные соединения C5 и/или C6, причем указанный способ включает использование контура рециркуляции по меньшей мере одного хлорсодержащего соединения.

Изобретение относится к способу изомеризационной дегидратации исходной смеси, содержащей от 40 до 100 масс.% первичного спирта, замещенного в положении 2 алкильной группой, выбранного из изобутанола, 2-метил-1-бутанола и их смесей.

Настоящее изобретение относится к катализатору для процесса изомеризации н-бутана в изобутан, включающему в свой состав оксид металла III-IV групп, анион кислородсодержащей кислоты, причем он представляет собой каталитический комплекс общей формулы ZrxOy*aAn-, где: х=1-2, у=2-3, An- - анион серной кислоты, а=0.01-0.2, диспергированный непосредственно на гидратированном нанодисперсном ZrxOy, содержащий гидрирующий компонент.

Изобретение относится к способу увеличения суммарного выхода ксилолов в комплексе производства ароматических углеводородов. Способ включает в себя стадии: разделения продукта риформинга, обогащенного ароматическими углеводородами, на первый поток углеводородов, содержащий C7- углеводороды, второй поток углеводородов, содержащий C8-C10 ароматические углеводороды, и третий поток углеводородов, содержащий C10+ ароматические углеводороды; изомеризации второго потока углеводородов, содержащего C8-C10 ароматические углеводороды, с образованием потока продуктов изомеризации C8-C10; пропускания потока продуктов изомеризации C8-C10 в зону дегидрирования нафтеновых углеводородов, чтобы получить поток продуктов зоны дегидрирования нафтеновых углеводородов; разделения потока продуктов зоны дегидрирования нафтеновых углеводородов на первый поток продуктов зоны дегидрирования нафтеновых углеводородов, содержащий C7- углеводороды, и второй поток продуктов зоны дегидрирования нафтеновых углеводородов, содержащий C8+ ароматические углеводороды; и пропускания второго потока продуктов зоны дегидрирования нафтеновых углеводородов, содержащего C8+ ароматические углеводороды, в секцию извлечения ксилолов или зону трансалкилирования.

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: цеолит типа ZSM-5 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора.

Изобретение относится к способу рециркуляции нафтенов в реактор, а также к устройству. Способ предусматривает: проведение в реакторе реакции сырьевого потока реактора, содержащего изомеры ксилола, этилбензол, С8-нафтены и водород, на катализаторе изомеризации этилбензола при условиях в реакторе, причем по меньшей мере часть этилбензола в сырьевом потоке реактора превращается в изомеры ксилола так, что образуется выходящий поток реактора, содержащий изомеры ксилола и С8-нафтены; охлаждение и разделение выходящего потока реактора с образованием первого сконденсированного жидкого потока и первого парообразного потока; охлаждение и разделение первого парообразного потока с образованием второго сконденсированного жидкого потока и второго парообразного потока; подачу первого сконденсированного жидкого потока и второго сконденсированного жидкого потока в колонну с отбором бокового погона с получением потока бокового погона, содержащего С8-ароматические вещества и С8-нафтены; извлечение параксилола из потока бокового погона в секции извлечения параксилола, получая обедненный по параксилолу поток, причем обедненный по параксилолу поток содержит часть С8-нафтенов; и рециркуляцию обедненного по параксилолу потока в реактор.

Изобретение относится к способу получения параксилола из потока С4 и потока каталитической нафты С5+ из установки каталитического крекинга. Способ содержит: a) отделение потока неароматических соединений C5-C9 и первого потока ароматических соединений C6-C10 от потока каталитической нафты С5+, причем стадия а) включает стадию перегонки и стадию экстракции; b) образование второго потока ароматических соединений C6-C10 из потока С4 и потока неароматических соединений C5-C9, причем по меньшей мере один из потока С4 и потока неароматических соединений C5-C9 содержит олефины; c) удаление примесей, с помощью секции удаления примесей, из первого и второго потоков ароматических соединений C6-C10 с получением очищенного потока ароматических соединений C6-C10; d) направление продуктов каталитического риформинга и пиролиза в сепарационную секцию; e) отделение в сепарационной секции потока C6-C7, первого потока C8, потока C9-C10 и потока С11+ от очищенных потоков ароматических соединений C6-C10 и продуктов каталитического риформинга и пиролиза; f) подача потока C6-C7 и потока C9-C10 в секцию образования ксилолов с получением второго потока C8; и g) подача первого и второго потоков C8 в секцию производства параксилола с получением параксилола высокой чистоты, при этом секция производства параксилола содержит зону отделения параксилола и зону изомеризации ксилолов.

Изобретение относится к химическому машиностроению и может быть использовано для распределения катализатора, циркулирующего в системе реактор-регенератор дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды.

Изобретение относится к нефтехимии, в частности, к установкам дегидрирования парафиновых углеводородов С3-С5 в соответствующие олефиновые углеводороды, используемые для получения основных мономеров для синтетического каучука, а также при производстве полипропилена, метилтретичнобутилового эфира и др.

Изобретение относится к способу управления технологическим процессом и номенклатурой выпускаемых нефтепродуктов при переработке нефти. Способ заключается в ее физическом, наиболее полном, разделении на фракции и характеризуется тем, что для увеличения выхода наиболее ценных светлых топливных фракций нефть подвергают криолизу при температурах не выше -15°С в течение не менее 20 часов с предварительным введением в нее донорной присадки (воды) в количестве не менее 1% на различных этапах ее переработки: перед фракционированием, вместо вакуумной перегонки, на нефтепромыслах, где одновременно с повышением содержания топливных фракций в нефти происходит ее обезвоживание и обессоливание (частичное или полное), а также в различных сочетаниях этапов переработки, например перед фракционированием и вместо вакуумной перегонки или на нефтепромыслах и вместо вакуумной перегонки.

Изобретение может быть использовано при изготовлении бурильных и режущих элементов, например бурильного долота для роторного бурения подземных пластов. Осколки алмаза, оксид и диоксид углерода инкапсулируют в сосуде в отсутствие металлического катализатора, герметизируют сосуд и воздействуют давлением не менее 4,5 ГПа и температурой не менее 1400°С, в результате чего между осколками алмаза образуется поликристаллический алмаз с межкристаллическими связями.
Наверх