Устройство для контролируемого получения пористых оксидов полупроводников in situ

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ). Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым комплексом свойств. Технический результат заявляемого устройства состоит в возможности измерения параметров получаемого материала в процессе его формирования, в частности пористости, толщины пористого слоя, оптических свойств и химической активности. Технический результат достигается тем, что устройство для контролируемого получения пористых оксидов полупроводников in situ, включающее электрохимическую ячейку, содержащую емкость для электролита, катод, анод в виде полупроводниковой подложки, источник излучения, окно для прохождения излучения, блок обработки информации, согласно изобретению дополнительно содержит полупрозрачное поворотное зеркало, окно для прохождения излучения выполнено в месте расположения анода-подложки, при этом зеркало расположено вне ячейки, в качестве источника излучения выбран лазер, расположенный с возможностью направления излучения перпендикулярно на анод через зеркало и окно для прохождения излучения, устройство дополнительно содержит блок регистрации излучения от лазера и блок регистрации излучения, отраженного от полупроводникового анода, выходы блоков регистрации подключены к входу блока обработки информации. 3 ил.

 

Изобретение относится к области получения пористых анодных оксидов полупроводников и изучения полупроводниковых материалов в процессе их формирования (т.е. in situ).

Из уровня техники известна электрохимическая ячейка для получения пористых анодных оксидов металлов и полупроводников (Патент на полезную модель RU № 122385, МПК C25D 11/00, опубл. 27.11.2012). Данная электрохимическая ячейка содержит ванну для электролита, катод, анод, установленный изолированно от электролита, уплотняющую прокладку, датчик температуры, устройство регулирования температуры в электрохимической ячейке, контактирующее с обратной поверхностью теплопроводящего держателя образца, блок диссипации тепла, контактирующий с устройством регулирования температуры, блок управления.

Известна электрохимическая ячейка (Патент на изобретение RU № 2425181, МПК C25D 11/02, опубл. 27.07.2011), которая является наиболее близкой к заявляемой полезной модели. Электрохимическая ячейка для получения пористых анодных оксидов металлов и полупроводников в in situ экспериментах по мало-
угловому рассеянию излучения, содержащая ванну, электропроводящую крышку, предназначенную для прижимания образца к торцу ячейки, термостат, при этом корпус ячейки замкнут, состоит из двух соосных цилиндров с возможностью заполнения электролитом и снабжен штуцерами для прокачки электролита через электрохимическую ячейку и удаления газообразных продуктов, торцевая стенка ячейки выполнена непоглощающей рентгеновское или нейтронное излучение и содержит прозрачное для пучка указанных излучений окно, а термостат выполнен с возможностью регулирования температуры электролита в пределах от -30 до +200°С.

Недостатком известных технических решений является невозможность получения полупроводниковых наноструктурированных материалов с прогнозируемым комплексом свойств.

Техническая проблема заключается в возможности получения полупроводниковых наноструктурированных материалов с прогнозируемым комплексом свойств.

Технический результат заявляемого устройства состоит в возможности измерения параметров получаемого материала в процессе его формирования, в частности пористости, толщины пористого слоя, оптических свойств и химической активности.

Технический результат достигается тем, что устройство для контролируемого получения пористых оксидов полупроводников in situ, включающее электрохимическую ячейку, содержащую емкость для электролита, катод, анод в виде полупроводниковой подложки, источник излучения, окно для прохождения излучения, блок обработки информации, согласно решению, дополнительно содержит полупрозрачное поворотное зеркало, окно для прохождения излучения выполнено в месте расположения анода-подложки, при этом зеркало расположено вне ячейки, в качестве источника излучения выбран лазер, расположенный с возможностью направления излучения перпендикулярно на анод через зеркало и окно для прохождения излучения, устройство дополнительно содержит блок регистрации излучения от лазера, и блок регистрации излучения, отраженного от полупроводникового анода, выходы блоков регистрации подключены ко входу блока обработки информации.

Сущность заявляемого устройства поясняется чертежами.

На фиг. 1 представлена схема заявляемого устройства.

На фиг. 2 представлен ход лучей в структуре с образующимся слоем пористого кремния (ПК),

На фиг. 3 представлена нормированная интерферограмма коэффициенте отражения от формируемого пористого кремния, полученного на облученной подложке, где:

1 - блок обработки информации,

2 - блок регистрации сигнала в опорном канале,

3 - блок регистрации сигнала в основном канале,

4 - полупрозрачное поворотное зеркало,

5 - катод,

6 - электрохимическая ячейка,

7 - анод - подложка,

8 - лазер,

9 - анализирующее излучение,

10 - образующийся слой пористого кремния на аноде-подложке 7,

d - толщина анода-подложки,

n10 - показатель преломления пористого кремния,

n7 - показатель преломления полупроводниковой пподложки,

n9 - показатель преломления воздуха.

Устройство состоит из блока обработки информации 1, блоков регистрации сигналов в опорном канале 2 и основном канале 3, полупрозрачного поворотного зеркала 4, на которое направлен источник излучения 8, из которого направляется лазерный луч перпендикулярно через оптический ввод в электрохимической ячейке 6 снизу на обрабатываемый анод-подложку 7. Анод-подложка 7 крепится во фторопластовой электрохимической ячейке 6. Катод 5 представляет собой спираль, выполненную из платиновой проволоки. Катод и анод располагаются горизонтально друг против друга.

Устройство работает следующим образом. Анодная обработка проводится в гальваностатическом режиме. В устройстве контролируемого получения пористых материалов источником излучения 8 является лазер с длиной волны 0,63 и 1,15 мкм. Лазерный луч проходит через оптический ввод в электрохимической ячейке 6 снизу и попадает на обрабатываемый анод-подложку 7. Отраженный луч поступает на фотоприемник основного канала 3. Для нормировки сигнала и исключения погрешности используется опорный канал, в котором излучение лазера, частично прошедшее через полупрозрачное зеркало 4 регистрируется фотоприемником с усилителем 2. Оба сигнала с основного и опорного каналов подаются на блок обработки информации 1.

Например, при образовании слоя пористого кремния на поверхности анода-подложки, лазерный луч с λ=1,15 мкм, попадая в исследуемый полупроводник со стороны, обратной травящейся, отражается соответственно от границы раздела «анод-подложка -воздух» и «анод-подложка - электролит». В ходе образовании слоя пористого кремния регистрируется временная зависимость отраженного излучения R(t) (непосредственно связанная с пористостью, толщиной, показателем преломления и скоростью образования получаемого пористого слоя), которая существенно отличается от коэффициента отражения исходного анода-подложки (например, кремния). Регистрируемые временные зависимости являются результатом интерференции излучений, отраженных от трех плоскостей - внешняя поверхность кремния, внутренняя подвижная плоскость раздела кремний - ПК и плоскость пористый кремний - электролит (фиг. 2).

Значения R(t) образуют систему совместных уравнений для двух неизвестных - скорости образования ПК и его показателя преломления - n10 с учетом n7 и n9. Число уравнений может существенно превышать число неизвестных. При этом скорость образования пористого слоя полагается постоянной, по крайней мере, в пределах одного полупериода высокочастотной составляющей интерференции. В ходе анодной обработки толщина анода-подложки d уменьшается с той же скоростью, с какой растет толщина слоя ПК. Поскольку показатель преломления кремния n3 в 1,5 - 2 раза больше, чем у пористого кремния, фазовая толщина подложки изменяется значительно быстрее фазовой толщины слоя ПК. Это является основой для упрощенной процедуры определения толщины и показателя преломления образующего слоя.

Пример использования.

Получение пористого кремния при анодной электрохимической обработке монокристаллического кремния в растворах на основе плавиковой кислоты HF. Состав электролита: 48% раствор плавиковой кислоты смешивался с изопропиловым спиртом (С3Н8О) в количестве 1:1. В качестве анода служит подложка кремния, в качестве катода платиновая проволока. Электрохимическая обработка проводится в гальваностатическом режиме при постоянном токе. В процессе снималась интерферограмма. В качестве подложек для получения пористого кремния использовались радиационно обработанные образцы кремния различного уровня легирования γ-квантами радиоизотопного источника 226Ra и на пучке тормозного излучения бетатрона. На модифицированных подложках кремния методом электрохимического травления при контроле in situ, изготовлялись образцы пористого кремния и исследовались их свойства.

Обработка in situ интерферограмм коэффициента отражения процесса получения пористого кремния с помощью быстрого преобразования Фурье (или методом пробного периода) с целью выявления высокочастотной (связана с изменением толщины анода-подложки) и низкочастотной (связана с толщиной образуемого слоя пористого кремния) составляющих сигнала отраженного излучения, позволяющих определять контролировать и определять кинетику скорости образования и показатель преломления, образующегося слоя пористого кремния, при этом погрешность измерения скорости роста, показателя преломления и пористости 0.6%, 6% и 6%, соответственно, при толщинах больше 2 мкм и пористости больше 60% при длине волны анализирующего излучения 1.15 мкм. Обработка in situ интерферограмм формируемых пористых слоев позволило установить, что на образцах пористого кремния, полученных на облученной подложке интерферограммы процесса более стабильны, чем не на облученных и, как следствие, более стабильны скорости образования и показатель преломления.

Устройство для контролируемого получения пористых оксидов полупроводников in situ, содержащее электрохимическую ячейку, состоящую из емкости для электролита, катода и анода в виде полупроводниковой подложки, источник излучения, окно для прохождения излучения и блок обработки информации, отличающееся тем, что оно дополнительно содержит полупрозрачное поворотное зеркало, блок регистрации излучения от лазера и блок регистрации излучения, отраженного от полупроводниковой подложки, при этом выходы блоков регистрации подключены к входу блока обработки информации, окно для прохождения излучения выполнено в месте расположения анода, зеркало расположено вне ячейки, а в качестве источника излучения использован лазер, расположенный с возможностью направления излучения перпендикулярно на полупроводниковую подложку через зеркало и окно для прохождения излучения.



 

Похожие патенты:

Изобретение относится к области гальванотехники и может быть использовано в машиностроении с целью повышения функциональных характеристик механизмов, работающих в агрессивных средах, а также в изделиях нефтеперерабатывающей промышленности.

Изобретение относится к области порошковой металлургии и может быть использовано для изготовления абразивного инструмента. Способ получения композиционного алмазосодержащего материала включает смешивание алмазного порошка с алюминиевым порошком, последующее горячее прессование при температуре 500-600°С до получения пористости 3-6 об.% и оксидирование поверхности.

Изобретение относится к медицинской технике и раскрывает способ нанесения биоактивного покрытия на титановые имплантаты. Способ характеризуется тем, что готовят раствор для покрытия, представляющий собой электролит, содержащий ортофосфорную кислоту, биоактивный гидроксиапатит, нанодисперсный германий и дистиллированную воду с последующим нанесением покрытия на титановый имплантат посредством микродугового нанесения при длительности импульса - 150-200 мкс, частоте следования импульсов 1-45 Гц и напряжении 310-400 В в течение 12-20 мин при постоянном перемешивании электролита.
Способ изготовления анода конденсатора на основе вентильного металла. .

Изобретение относится к созданию эластичной алюмооксидной наномембраны на основе анодированного алюминия. Способ включает подготовку поверхности образцов путем термообработки в течение 30 мин при температуре 450°С и анодирование в многокомпонентном электролите 50 г/л щавелевой кислоты + 100 г/л лимонной кислоты + 50 г/л борной кислоты + 100 мл/л изопропилового спирта в гальваностатическом режиме при температуре 20°С и плотности тока 25 мА/см2.

Изобретение относится к плазменно-электролитическому нанесению покрытий на вентильные металлы и их сплавы и может найти применение в различных отраслях промышленности, в машиностроении, приборостроении для работы в узлах трения и для защиты изделий и сооружений от атмосферной и электрохимической коррозии.

Изобретение относится к области гальванотехники и может быть использовано для выполнения обработки деталей анодированием, в частности микродуговым оксидированием.

Изобретение относится к области гальванотехники и может быть использовано для нанесения покрытий методом микродугового оксидирования. Электролит для нанесения покрытия микродуговым оксидированием изделия, поверхность которого полностью или частично выполнена из вентильного металла или сплава, содержит, г/л: фосфат щелочного металла от 25 до 60; тетраборат щелочного металла от 18 до 50; борную кислоту от 10 до 40; фторид щелочного металла от 1 до 25; метасиликат щелочного металла от 0,5 до 9,0 и воду.

Изобретение относится к области гальванотехники, в частности к анодированию и микродуговому оксидированию поверхностей сквозных отверстий изделий из сплавов вентильных металлов, и может быть использовано в машиностроении.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ формирования теплозащитной пленки заключается в том, что формируют анодную оксидную пленку, имеющую верхнюю поверхность, снабженную порами, сформированными на ней, посредством обработки анодирования части, составляющей камеру сгорания двигателя.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и смежных отраслях промышленности. Способ включает электрохимическое оксидирование поверхностей отверстий при протекании через них кислых или щелочных растворов электролитов без применения специальных ванн, исключительно внутри самих отверстий с формированием на поверхностях плотных покрытий, преимущественно состоящих из оксидов вентильных металлов изделий, а также последующее наполнение сформированных покрытий кипящей дистиллированной водой и ее паром.

Изобретение относится к медицинской технике и раскрывает способ нанесения биоактивного покрытия на титановые имплантаты. Способ характеризуется тем, что готовят раствор для покрытия, представляющий собой электролит, содержащий ортофосфорную кислоту, биоактивный гидроксиапатит, нанодисперсный германий и дистиллированную воду с последующим нанесением покрытия на титановый имплантат посредством микродугового нанесения при длительности импульса - 150-200 мкс, частоте следования импульсов 1-45 Гц и напряжении 310-400 В в течение 12-20 мин при постоянном перемешивании электролита.
Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек путем обезжиривания и промывки в холодной воде, последующее травление в растворе смеси минеральных кислот, нанесение слоя целевого светопоглощающего покрытия, при этом операцию травления поверхности деталей из нержавеющей стали ведут в растворе состава (г/л): кислота азотная 350-400; кислота плавиковая 20-25, при комнатной температуре, в течение не более 20 минут, после чего производят предварительное никелирование в электролите состава (г/л): никель хлористый 200-250; кислота соляная 50-100, при плотности тока 3-5 А/дм2, температуре 15-25°С, в течение 5-15 минут с никелевыми анодами, затем осуществляют процесс гальванического меднения в электролите состава (г/л): медь сернокислая 100-250; кислота серная 50-100; спирт этиловый ректификат 10-30 мл/л, при плотности тока 1,5-2 А/дм2, температуре 15-45°С в течение 4-5 часов, с медными анодами в чехлах, и окончательное целевое покрытие осуществляют путем хромирования в электролите состава (г/л): хромовый ангидрид 250-280; кислота борная 10-15; натрий уксуснокислый 3,0-5,0, при плотности тока 30-75 А/дм2, температуре 15-30°С в течение 5-15 минут с нерастворимыми свинцовыми анодами с получением светопоглощающего слоя.

Изобретение используется для диагностики и прогнозирования параметров качества покрытий (толщина, микротвердость, пористость), получаемых методом микродугового оксидирования.
Изобретение относится к области гальванотехники и может быть использовано в машиностроении, медицине, автомобильной, аэрокосмической, радиоэлектронной промышленности как в единичном, так и в серийном производстве.

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и смежных отраслях промышленности. Способ включает электрохимическое оксидирование продолжительностью 30-100 минут в реверсивных потоках кислых или щелочных растворов электролитов, при этом оксидирование осуществляют без применения специальных ванн, устанавливая детали внутри противоэлектродов из нержавеющей стали, в полостях, формы которых соответствуют формам деталей, а размеры превышают соответствующие наружные размеры деталей на 4-10 мм, при этом через данные полости пропускают растворы электролитов, обеспечивая их расход от 0,2 до 5,0 л на 1 дм2 площади оксидируемых поверхностей деталей и изменяя направление их течения на противоположное, спустя половину времени оксидирования.

Изобретение относится к способу обработки зеркала цилиндра двигателя внутреннего сгорания, выполненного из алюминия или его сплава, включающему хонингование зеркала цилиндра в заготовке с образованием хонингованного зеркала цилиндра, имеющего в ненагруженном состоянии нецилиндрическую исходную форму, способного деформироваться под нагрузкой до цилиндрической формы, и нанесение покрытия на хонингованное зеркало цилиндра электролизом с образованием зеркала цилиндра с покрытием, причем часть покрытия врастает в основной материал, а другая его часть создается снаружи на поверхности основного материала, при этом часть покрытия, которая создается снаружи, имеет большую толщину, чем часть покрытия, вросшая в основной материал.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ формирования теплозащитной пленки заключается в том, что формируют анодную оксидную пленку, имеющую верхнюю поверхность, снабженную порами, сформированными на ней, посредством обработки анодирования части, составляющей камеру сгорания двигателя.

Изобретение относится к индивидуальной маркировке товаров с повышенной надежностью защиты маркировки от подделки. Способ включает нанесение основного и индивидуального штрихкодов с соответствующими цифровыми кодами, в пространстве между которыми неразъемно устанавливают невоспроизводимую матрицу из металла.

Изобретение относится к производству полосы, изготовленной из алюминия или алюминиевого сплава. Осуществляют обезжиривание и анодирование поверхности полосы посредством ее погружения в ванну с кислотным электролитом и приложения переменного тока для образования оксидного слоя на поверхности полосы.

Изобретение относится к двигателестроению, а именно к вспомогательным системам для термического воздействия на топливо и моторное масло при эксплуатации двигателей внутреннего сгорания в условиях пониженных температур окружающей среды, и может быть использовано в стационарных и транспортных энергетических установках с двигателями внутреннего сгорания для облегчения пуска.
Наверх