Способ получения периклазошпинельной керамики


C04B35/6261 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2719291:

федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") (RU)

Изобретение относится к огнеупорной промышленности и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий. Способ получения периклазошпинельной керамики включает обжиг керамообразующей смеси карбоната магния (MgCO3) и оксида алюминия (γ-Al2O3). Получение смеси карбоната магния и оксида алюминия осуществляют весовым способом в соотношении, мас.%: 90 MgCO3, 10 γ-Al2O3 с использованием магнезиального концентрата с содержанием MgCO3 не менее 92%. Измельчение проводят в шаровой мельнице при 250 об/мин в течение 15 мин, смешивают в вибрационной дисковой мельнице в течение 20 мин, затем осуществляют двустороннее прессование без связующего агента при давлении 40 кН. Образцы обжигают при температуре 1550°С в течение 1 часа со ступенчатым нагреванием при промежуточных температурах 800°С, 900°С, 1000°С, 1200°С, 1400°С в течение 0,5 часа. Технический результат заключается в получении периклазошпинельных огнеупорных изделий, обладающих высокими механическими характеристиками, при снижении трудо- и энергозатрат. 2 пр. 1 табл.

 

Изобретение относится к способам получения керамических материалов на основе смеси карбоната магния и оксида алюминия и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий.

Известен способ получения материалов тугоплавких оксидных систем, включающий в себя смешивание исходных компонентов, загрузку их в печь, слив в изложницу и охлаждение на воздухе [Попов О.Н., Рыбалкин П.Т., Соколов В.А., Иванов С.Д. - М.: Металлургия, 1985, с. 63]. Недостатком этого является низкое нестабильное качество получаемого продукта ввиду неоднородности химического состава и структуры, нарушение стехиометрии расплава, обусловленное повышенной дефектностью материала (усадочные раковины, пористость, горячие трещины и др.), формирующейся при охлаждении.

Также известен способ получения тугоплавких оксидных систем, в котором смешивают исходные компоненты, загружают в печь, плавят на «блок» под слоем шихты, удаляют «блок» из печи и охлаждают на воздухе под слоем шихты [Попов О.Н., Рыбалкин П.Т., Соколов В.А., Иванов С.Д. - М.: Металлургия, 1985, с. 61.]. Повышение качества получаемых материалов обусловлено более равновесными условиями по сравнению с указанным выше аналогом. Недостатком этого способа являются повышенные трудо- и энергозатраты.

Известен способ изготовления периклазошпинельных изделий, включающий приготовление алюмомагниевой композиции путем совместного помола периклаза и глинозема, увлажнения молотой смеси временным связующим, окускования ее, термообработки окускованной смеси, последующего ее дробления, смешивания полученной зернистой алюмомагниевой композиции с дисперсным и зернистым периклазом, увлажнения этой смеси временным связующим, прессования полученной увлажненной массы, сушки и обжига изделий. При этом алюмомагниевую композицию изготавливают из смеси, содержащей 28-40 мас. % периклаза и 60-72 мас. % глинозема. Термообработку молотой смеси после ее окускования осуществляют сушкой или кратковременным обжигом при 1450-1650°С. Изделия прессуют из массы, содержащей 45-70 мас. % зернистого периклаза, 5-20 мас. % зернистой алюмомагниевой композиции и 25-35 мас. % дисперсного периклаза. Алюмомагниевая композиция может содержать 4-72 мас. % свободного оксида алюминия. Ее линейная усадка при обжиге в составе изделий не более 5,5% [патент РФ №2116276 Способ изготовления периклазошпинельных огнеупорных изделий. МПК С04В 35/04, опубл. 27.07.1998.]. Недостатком этого способа является спекание алюмомагниевой композиции из смеси порошков периклаза и глинозема с размером частиц менее 0.2 мм при кратковременном обжиге в интервале температур 1450-1650°С.

В литературе представлены сведения [заявка на изобретение №2016150506, опубл. 22.06.2018] о способе, являющимся прототипом, включающем смесь карбоната магния и оксида алюминия при объемном соотношении компонентов 90:10 соответственно с использованием в качестве реагента для синтеза карбонат магния, где указано, что обжиг производится при использовании диапазона температур 1550-1650°С. Однако согласно описанной формуле предлагаемого изобретения способ предусматривает только обжиг смеси карбоната магния и гамма-Al2O3. При отсутствии операции формования возникает сомнение в возможности получения таким способом керамического изделия.

Аналогом по достигаемому результату является способ получения керамики на основе алюмомагнезиальной шпинели [Патент RU №2486160, МПК С04В 35/443, опубл. 27.06.2013], при котором смешивают порошки оксида алюминия (Al2O3) и оксида магния (MgO) в стехиометрическом соотношении, сушат, формуют и обжигают при режимах, обеспечивающих шпинелеобразование. Причем после образования шпинели проводят ее измельчение, добавляют порошок наноразмерных фракций оксида магния и порошок оксида галлия. Затем полученную массу сушат и гранулируют в потоке газа, после чего осуществляют повторное формование и отжиг, который проводят при температуре не более 1500°С. Недостатком указанного способа является образование прочных конгломератов, которые сохраняются в процессе последующего измельчения, не обеспечивая гомогенного распределения шпинели в алюмооксидной матрице.

Техническая задача заявленного изобретения состоит в получении плотного керамического периклазошпинельного огнеупорного материала.

Технический результат заключается в повышении качества периклазошпинельных огнеупорных изделий - плотного керамического материала, обладающего высокими механическими характеристиками, снижении трудо- и энергозатрат.

Технический результат достигается тем, что в способе получения периклазошпинельной керамики, включающем обжиг керамообразующей смеси карбоната магния (MgCO3) и оксида алюминия (γ-Al2O3) с использованием в качестве реагента для синтеза шпинели - карбонат магния, согласно изобретению, получение смеси карбоната магния и оксида алюминия осуществляют весовым способом в соотношении, мас. %: 90 - MgCO3, 10 - γ-Al2O3 с использованием магнезиального концентрата с содержанием MgCO3 не менее 92%, измельчение проводят в шаровой мельнице при 250 об. мин в течение 15 мин., смешивают смесь в вибрационной дисковой мельнице в течение 20 мин., последующее прессование образцов осуществляют методом двустороннего прессования без связующего агента при давлении 40 кН, обжиг образцов ведут при температуре 1550°С в течение 1 часа со ступенчатым нагреванием при промежуточных температурах 800°С, 900°С, 1000°С, 1200°С, 1400°С в течение 0.5 часа.

Реакция шпинелеобразования идет в 2 этапа. На первом этапе происходит разложение карбоната магния и образование оксида магния. При этом в процессе реакции выделяется углекислый газ, способствующий формированию пористой структуры промежуточного продукта. Образующийся в процессе разложения оксид магния обладает высокой реакционной способностью, что обеспечивает полное протекание реакции шпинелеообразования при температуре 1500°С.

MgCO3 + Al2O3 → MgO + CO2↑ + Al2O3

Реакция разложения карбоната инициирует взаимодействие оксида магния и Al2O3 (второй этап реакции) с образованием алюмомагниевой шпинели.

MgO + Al2O3 → MgAl2O4

Пример 1

Магнезиальный концентрат получали методом магнитной сепарации аморфного магнезита. Содержание MgCO3 в полученном концентрате не менее 92%. Полученный магнезитовый концентрат измельчали в шаровой мельнице при 250 об. мин в течение 15 мин. Далее получали смесь карбоната магния и оксида алюминия весовым способом в соотношении, мас. %: 90 - MgCO3,10 - γ-Al2O3, смешивали ее в вибрационной дисковой мельнице в течение 20 мин. Последующее прессование образцов осуществляли методом двустороннего прессования без связующего агента при давлении 40 кН. Получены экспериментальные образцы диаметром 21 мм и высотой 10 мм. Образцы обжигали при температуре 1550 в течение 3 часов.

Пример 2

Магнезиальный концентрат был получен методом магнитной сепарации аморфного магнезита. Содержание MgCO3 в полученном концентрате не менее 92%. Полученный магнезитовый концентрат измельчали в шаровой мельнице при 250 об. мин в течение 15 мин. Далее получали смесь карбоната магния и оксида алюминия весовым способом в соотношении, мас. %: 90 - MgCO3, 10 - γ-Al2O3, смешивали ее в вибрационной дисковой мельнице в течение 20 мин. Последующее прессование образцов осуществляли методом двустороннего прессования без связующего агента при давлении 40 кН. Получены экспериментальные образцы диаметром 21 мм и высотой 10 мм. Образцы обжигали при температуре 1550°С в течение 1 часа со ступенчатым нагреванием при промежуточных температурах 800°С, 900°С, 1000°С, 1200°С, 1400°С в течение 0.5 часа.

Подготовленные в соответствии с предложенными режимами материалы обладают показателями физических и механических свойств, приведенными на Фиг. 1.

Предложенный способ позволяет получать плотный керамический материал, который обладает высокими физико-механическими характеристиками.

Способ получения периклазошпинельной керамики, включающий обжиг керамообразующей смеси карбоната магния (MgCO3) и оксида алюминия (γ-Al2O3) с использованием в качестве реагента для синтеза шпинели карбоната магния, отличающийся тем, что получение смеси карбоната магния и оксида алюминия осуществляют весовым способом в соотношении, мас.%: 90 MgCO3, 10 γ-Al2O3 с использованием магнезиального концентрата с содержанием MgCO3 не менее 92%, измельчение проводят в шаровой мельнице при 250 об/мин в течение 15 мин, смешивают смесь в вибрационной дисковой мельнице в течение 20 мин, последующее прессование образцов осуществляют методом двустороннего прессования без связующего агента при давлении 40 кН, обжиг образцов ведут при температуре 1550°С в течение 1 часа со ступенчатым нагреванием при промежуточных температурах 800°С, 900°С, 1000°С, 1200°С, 1400°С в течение 0,5 часа.



 

Похожие патенты:

Производственная линия для спекания тонких керамических изделий содержит ленту необработанного материала, которую направляют через печь, так, что печь выжигает материал органического связующего, и затем лента частично спекается без использования установочной плиты.

Изобретение относится к способу изготовления комплексного материала с металлической матрицей, усиленной одностенными углеродными нанотрубками. Данный способ включает в себя следующее: (a) получают комплексный порошок путём размалывания 99,9 об.% порошка меди и 0,1 об.% порошка одностенных углеродных нанотрубок в шаровой мельнице; и (b) изготовляют комплексный материал, содержащий металл и углеродные нанотрубки, путём искрового плазменного спекания (ИПС) комплексного порошка, полученного на стадии (a) при температуре 600°С и давлении 600 МПа в течение 5 мин.

Изобретение относится к способу получения керамического композита из карбида кремния, упрочненного волокном из карбида кремния, который может быть использован для работы в кислых и агрессивных средах, в условиях высоких температур и длительного механического воздействия.

Настоящее изобретение относится к области прозрачных керамических материалов со структурой иттрий-алюминиевого граната, легированного ионами эрбия и скандия кубической структуры Er:ИАГ(Sc), обладающих свойствами для использования в качестве люминесцентных сцинтилляционных материалов, предназначенных для сканирующих систем медицинской высокоскоростной компьютерной томографии, рентгеновских установок и установок гамма-излучения.

Изобретение относится к огнеупорным объектам из оксида хрома, которые могут быть использованы в качестве футеровочных блоков или блоков для стеклоплавильного агрегата.

Изобретение относится к способам получения модифицированных волокон оксида алюминия для создания новых материалов, которые позволят работать в окислительных средах при высоких температурах и нагрузках, обеспечивая при этом снижение массы летательных аппаратов.

Изобретение относится к промышленному производству корундовой керамики, модифицированной неорганическими связующими, и может применяться, преимущественно, для изготовления крупногабаритных керамических изделий, функционирующих в условиях высоких температур.

Изобретение относится к способу получения кислородпроводящей и магнитной керамики на основе сложного оксида железа и кобальта и может быть использовано при изготовлении мембран для сепарации кислорода, катализаторов дожигания выхлопных газов, электродов для химических источников тока, датчиков тока и магнитного поля, логических элементов.
Изобретение относится к изготовлению керамических изделий из порошка. Способ включает прессование порошка с одновременным электроимпульсным спеканием.
Изобретение относится к технологии керамических пьезоэлектрических, диэлектрических, ферромагнитных и смешанных материалов на основе фаз кислородно-октаэдрического типа (например, со структурой типа перовскита), применяемых в полупроводниковой, пьезоэлектрической и радиоэлектронной технике, в частности, для изготовления гидроакустических устройств, приборов СВЧ, УЗ диапазонов, а также приборов точного позиционирования объектов (литография, туннельные растровые микроскопы) и т.д.

Изобретение относится к способу получения керамического композита из карбида кремния, упрочненного волокном из карбида кремния, который может быть использован для работы в кислых и агрессивных средах, в условиях высоких температур и длительного механического воздействия.
Изобретение относится к производству легковесного керамического теплоизоляционного и теплоизоляционно-конструкционного материала, который может быть использован для тепловой изоляции зданий, сооружений и различных промышленных установок.

Изобретение относится к огнеупорной промышленности и может быть использовано для обогащения лома отработанных плавленолитых бадделеитокорундовых материалов – вторичного минерального сырья для изготовления бакоровых огнеупорных футеровок стекловаренных печей.

Настоящее изобретение относится к области прозрачных керамических материалов со структурой иттрий-алюминиевого граната, легированного ионами эрбия и скандия кубической структуры Er:ИАГ(Sc), обладающих свойствами для использования в качестве люминесцентных сцинтилляционных материалов, предназначенных для сканирующих систем медицинской высокоскоростной компьютерной томографии, рентгеновских установок и установок гамма-излучения.

Изобретение относится к способам получения модифицированных волокон оксида алюминия для создания новых материалов, которые позволят работать в окислительных средах при высоких температурах и нагрузках, обеспечивая при этом снижение массы летательных аппаратов.

Изобретение относится к способам защиты углеродсодержащих материалов от окисления и касается защиты от окисления крупногабаритных изделий. Согласно способу заготовку из пористого углеродсодержащего композиционного материала подвергают предварительному силицированию жидкофазным методом при нагреве до 1650-1750°С при давлении в реакторе 600-760 мм рт.ст.

Изобретение относится к получению динасового огнеупорного материала для применения в верхнем строении ванных стекловаренных печей. В соответствии с заявленным способом содержащее карбид кремния зернистое вещество смешивают с по крайней мере одним зернистым кремнезёмистым сырьём и связкой или смесью связок с получением формовочной массы, из которой прессуют кирпичи, которые затем сушат и обжигают при температуре выше 1200°С.

Изобретение относится к промышленному производству корундовой керамики, модифицированной неорганическими связующими, и может применяться, преимущественно, для изготовления крупногабаритных керамических изделий, функционирующих в условиях высоких температур.

Изобретение относится к области синтеза мелкокристаллического титаната бария, используемого для изготовления керамических конденсаторов. Способ включает обработку смеси диоксида титана и барийсодержащего реагента в среде на основе пара воды при повышенных температуре и давлении, при этом в качестве барийсодержащего реагента используется моногидрат нитрита бария Ba(NO2)2⋅H2O и обработку реагентов ведут в среде смеси пара воды и аммиака; смесь порошков моногидрата нитрита бария и оксида титана берут в мольном отношении [Ва(NO2)2⋅Н2O]/ТiO2 от 1,0 до 1,3; в реакционном пространстве мольное отношение NH4OH/Н2О=1/5; термообработку смеси реагентов паром, содержащим аммиак, ведут в течение времени от 1 до 16 часов в изотермических условиях при температуре, выбранной в интервале от 250 до 400°С со скоростью нагрева в интервале 50-100°С/ч и давлении пара воды от 3,98 до 26,1 МПа.
Изобретение относится к огнеупорным продуктам в виде сухой минеральной шихты из огнеупорных минеральных материалов, которая может быть использована для получения формованного огнеупорного кирпича или монолитной футеровки печей для выплавки цветных металлов.

Изобретение относится к способу изготовления комплексного материала с металлической матрицей, усиленной одностенными углеродными нанотрубками. Данный способ включает в себя следующее: (a) получают комплексный порошок путём размалывания 99,9 об.% порошка меди и 0,1 об.% порошка одностенных углеродных нанотрубок в шаровой мельнице; и (b) изготовляют комплексный материал, содержащий металл и углеродные нанотрубки, путём искрового плазменного спекания (ИПС) комплексного порошка, полученного на стадии (a) при температуре 600°С и давлении 600 МПа в течение 5 мин.

Изобретение относится к огнеупорной промышленности и может быть использовано для получения обожженных термостойких периклазошпинельных огнеупорных изделий. Способ получения периклазошпинельной керамики включает обжиг керамообразующей смеси карбоната магния и оксида алюминия. Получение смеси карбоната магния и оксида алюминия осуществляют весовым способом в соотношении, мас.: 90 MgCO3, 10 γ-Al2O3 с использованием магнезиального концентрата с содержанием MgCO3 не менее 92. Измельчение проводят в шаровой мельнице при 250 обмин в течение 15 мин, смешивают в вибрационной дисковой мельнице в течение 20 мин, затем осуществляют двустороннее прессование без связующего агента при давлении 40 кН. Образцы обжигают при температуре 1550°С в течение 1 часа со ступенчатым нагреванием при промежуточных температурах 800°С, 900°С, 1000°С, 1200°С, 1400°С в течение 0,5 часа. Технический результат заключается в получении периклазошпинельных огнеупорных изделий, обладающих высокими механическими характеристиками, при снижении трудо- и энергозатрат. 2 пр. 1 табл.

Наверх