Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи

Изобретение относится к области управления движением космических аппаратов. Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, заключается в том, что устанавливают на передающем и принимающем космических аппаратах приемно-передающие радиотехнические устройства и источник лазерного излучения. Управляют направлением лазерного луча по азимутальному углу и углу места из условия сканирования лазерным лучом заданной области космического пространства. С передающего космического аппарата излучают лазерный сигнал в направлении принимающего космического аппарата. После регистрации этого сигнала на принимающем космическом аппарате в направлении передающего космического аппарата излучают радиосигнал, по параметрам которого в момент регистрации определяют направление лазерного луча. Достигается повышение оперативности определения направления лазерного луча.

 

Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи.

Известно защищенное патентом изобретение - аналог: патент №2506547, заявка 2012140350/28 МПК G01J 1/44, 2012 год «Приемник импульсных оптических сигналов» (Вильнер В.Г., Волобуев В.Г., Почтарев В.Л., Рябокуль Б.К.). Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, усилитель выполнен в виде двух транзисторных повторителей с общей нагрузкой, вход одного из повторителей подключен к нагрузке фотоприемника, а вход второго повторителя имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам транзисторных повторителей введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе. Технический результат заключается в повышении точности временной привязки принятого сигнала и, соответственно, высокой точности измерений с помощью приборов, в которых используется такой приемник. Недостатком изобретения является невозможность его использования при больших расстояниях между космическими аппаратами, поскольку регистрируются отраженные сигналы лазерного излучения.

Известно заявленное изобретение - аналог: патент №2619168, от 12.05.2017, заявка №2015152105, МПК B64G 3/00, 2015 год, «Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому принимают сигналы, излучаемые приближающимся активным объектом, измеряют амплитуду и выполняют обработку принимаемых сигналов. Для приема сигналов применяют детекторы плоской формы. Детекторы располагают на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал - поглотитель излучения. Направление на активный приближающийся объект определяют по радиус-вектору, направленному на детектор с максимальной амплитудой регистрируемого сигнала. Недостатком способа является отсутствие излучающих элементов, что не обеспечивает возможность его использования в качестве космического маяка.

Известно защищенное патентом изобретение - аналог: патент №2639609, МПК G02B 26/10,G05D 1/00, 2017 год «Способ управления лазерным лучом» (Яковлев М.В., Яковлева Т.М., Яковлев Д.М.), согласно которому в магнитное поле помещают платформу с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, причем проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия отражения лазерного луча от зеркала в заданном направлении. Недостаток изобретения заключается в том, что оно не позволяет осуществлять регистрацию сигналов лазерного излучения, отраженных от контролируемых космических объектов.

Известно защищенное патентом изобретение - аналог: патент №2462731, МПК G01S 1/70, B64G 1/36, 2011 год «Сканирующий лазерный маяк космических аппаратов» (Старовойтов Е.И.), согласно которому предложен сканирующий лазерный маяк, содержащий корпус и источник лазерного излучения, установленный в сканирующем блоке в карданном подвесе. В устройство введена оптическая анаморфотная система, установленная в сканирующем блоке на одной оптической оси с источником лазерного излучения. При этом ось карданного подвеса перпендикулярна упомянутой оптической оси, а оптическая анаморфотная система представляет собой в сечении, перпендикулярном направлению сканирования, широкоугольный объектив типа «рыбий глаз». Качающийся привод, находящийся в механической связи со сканирующим блоком, выполнен качающимся в плоскости сканирования. Изобретение относится к области оптических средств измерения параметров относительного сближения космических аппаратов. Технический результат заключается в обеспечении возможности обнаружения пассивного космического аппарата в половине телесного угла на дистанциях до 160 км при наведении на него активного космического аппарата. Недостаток изобретения заключается в недостаточно высокой оперативности определения направления на космический объект, что связано с необходимостью применения механических устройств.

Известно защищенное патентом изобретение - прототип: патент №2676999 от 21.02.2018, заявка №2018106613, МПК B64G 1/64, 2018 год «Способ определения направления на космический объект» (Яковлев М.В.), согласно которому управляют направлением лазерного луча за счет поворота расположенной в магнитном поле платформы с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне, проводник электрического тока выполняют в виде кольцевых витков, расположенных по периметру платформы, поворотный механизм устанавливают в центре тяжести платформы, магнитное поле формируют системой электромагнитов, ток кольцевых витков и электромагнитов регулируют из условия сканирования лазерным лучом заданной области космического пространства, а направление на космический объект определяют по отраженному от него сигналу лазерного излучения, причем ток кольцевых витков поддерживают постоянным, ток электромагнитов задают в виде последовательности импульсов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, а направление на космический объект определяют по параметрам импульсов развертки, при которых зарегистрирован сигнал отраженного лазерного излучения. Недостатком изобретения - прототипа является сложность определения направления на космические объекты, расположенные на значительном удалении от источника лазерного излучения в силу ослабления по квадратичному закону интенсивности как первичного, так и отраженного излучения.

Целью предполагаемого изобретения является определение направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи.

Указанная цель достигается в заявляемом способе определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, согласно которому устанавливают на передающем и принимающем космических аппаратах приемно-передающие радиотехнические устройства и источник лазерного излучения. Управляют направлением лазерного луча за счет поворота расположенной в магнитном поле платформы с зеркалом на одной стороне, проводником электрического тока и поворотным механизмом на противоположной стороне. Выполняют проводник электрического тока в виде кольцевых витков, расположенных по периметру платформы, устанавливают поворотный механизм в центре тяжести платформы, формируют магнитное поле системой электромагнитов.

Поддерживают постоянным ток кольцевых витков, задают ток электромагнитов в виде последовательности импульсов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места из условия сканирования лазерным лучом заданной области космического пространства. Излучают радиосигнал в направлении передающего космического аппарата при регистрации сигнала лазерной космической связи на принимающем космическом аппарате. Определяют направление лазерного луча по параметрам импульсов развертки в момент регистрации радиосигнала на передающем космическом аппарате. Выбирают период следования импульсов развертки лазерного луча более удвоенного времени распространения радиосигнала между космическими аппаратами.

Обоснование реализуемости заявляемого способа заключается в следующем. Лазерная космическая связь может осуществляться между КА, расположенными на геостационарной орбите (ГСО) и в области низких околоземных орбит (НОО) на расстояниях до нескольких десятков тысяч километров. В этом случае регистрация отраженного лазерного излучения не представляется возможной, и связь между передающим и приемным КА может поддерживаться путем обмена радиосигналами. Предварительное планирование сеансов связи позволяет получить предварительную информацию об относительном расположении КА и, тем самым, применять направленные антенные системы для передачи и приема радиосигналов. В момент прихода лазерного сигнала от передающего КА на борту приемного КА генерируется радиосигнал, который принимается на борту передающего КА и идентифицирует параметры импульсов развертки, соответствующих направлению лазерного луча на приемный КА. Выбор периода следования импульсов развертки лазерного луча более удвоенного времени распространения радиосигнала между космическими аппаратами обеспечивает сохранность направления до момента поступления информации о приходе лазерного луча на борт приемного КА. Выбор начальной области сканирования также определяется предварительной информацией об относительном расположении КА. Дополнительными условиями выбора параметров импульсов тока электромагнитов, обеспечивающих развертку лазерного луча по азимутальному углу и углу места, являются известные значения угла расходимости лазерного излучения и условие сплошного покрытия лазерным излучением контролируемой области космического пространства.

Таким образом, техническая возможность реализации и практическая значимость заявляемого способа определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, не вызывает сомнений.

Способ определения направления лазерного луча на космический аппарат, принимающий сигналы лазерной космической связи, согласно которому устанавливают на передающем и принимающем космических аппаратах приемно-передающие радиотехнические устройства и источник лазерного излучения, управляют направлением лазерного луча по азимутальному углу и углу места из условия сканирования лазерным лучом заданной области космического пространства, отличающийся тем, что с передающего космического аппарата излучают лазерный сигнал в направлении принимающего космического аппарата, после регистрации этого сигнала на принимающем космическом аппарате в направлении передающего космического аппарата излучают радиосигнал, по параметрам которого в момент регистрации определяют направление лазерного луча.



 

Похожие патенты:

Изобретение относится к области авиационно-ракетной техники, а более конкретно к фюзеляжам ЛА. Фюзеляж беспилотного летательного аппарата содержит основной и отделяемый отсеки.

Изобретение относится к космической технике, а более конкретно к стыковочным агрегатам космических аппаратов. Механизм герметизации стыка стыковочных агрегатов содержит активный и пассивный шпангоуты с системами замков с крюками, электроприводы и датчики.
Изобретение относится к области управления движением космических аппаратов (КА) и может быть использовано для навигации космических аппаратов в дальнем космосе. Способ включает сканирование лазерным лучом заданной области пространства путём отражения луча от зеркала на поворотной платформе, установленной в электромеханическом подвесе.

Изобретение относится к космической технике, а более конкретно к активирующим устройствам для механических устройств удержания подвижных элементов конструкции конструкций космических аппаратов.

Изобретение относится к области космической техники, а более конкретно к механизмам для удержания трансформируемых механических систем в сложенном положении. Устройство удержания и освобождения трансформируемых механических систем космического аппарата содержит стационарную и отделяемую части, стянутые штырем.

Изобретение относится к средствам стыковки космических аппаратов (КА) при их выведении и последующей расстыковки в космосе. Диспенсер (адаптер) (1), преимущественно малых КА (микроспутников), состоит из кольцевой конструкции с несколькими портами (2) для установки КА.

Изобретение относится к транспортировке полезных грузов при перелетах космического корабля (КК), например, с окололунной на околоземную орбитальную станцию. Способ включает стыковку КК с разгонным блоком (РБ) и выдачу с помощью РБ импульса для перелета с окололунной орбиты к Земле по пролетной траектории с высотой перигея, равной высоте конечной околоземной орбиты.

Изобретение относится к транспортировке полезных грузов при перелетах космического корабля (КК), например, с окололунной на околоземную орбитальную станцию. Способ включает стыковку КК с разгонным блоком (РБ) и выдачу с помощью РБ импульса для перелета с окололунной орбиты к Земле по пролетной траектории с высотой перигея, равной высоте конечной околоземной орбиты.

Изобретение относится к соединительным устройствам космических аппаратов (КА) и может быть использовано для буксировки космического мусора, в т. ч.

Изобретение относится к соединительным устройствам космических аппаратов (КА) и может быть использовано для буксировки космического мусора, в т. ч.

Изобретение относится к области ракетно-космической техники, а более конкретно к устройствам запуска спутников. Устройство для группового запуска спутников выполнено в виде колонны из соединенных друг с другом одинаковых секций, выполненных в виде четырехгранных ферм. Ферма каждой из секций содержит четыре продольные стойки, верхние и нижние пояса с опорными узлами, соединенными с продольными стойками, поперечными силовыми элементами и диагональными раскосами. Раскосы выполнены в поперечном сечении с профилем в виде двутавра и скреплены друг с другом вблизи их середин. Секции устройства снабжены рамами, балки которых выполнены в поперечном сечении в виде швеллера. Внешние пояса рам выполнены с обеспечением возможности крепления запускаемых спутников, а внутренние пояса закреплены на диагональных раскосах. Места стыка балок рам друг с другом снабжены опорными площадками, которые соединены с внутренними поясами балок и выполнены с обеспечением возможности размещения на указанных площадках элементов крепления рамы к диагональным раскосам. Достигается уменьшение массы устройства. 4 з.п. ф-лы, 5 ил.
Наверх