Способ комплексной водородной термобарохимической обработки продуктивного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат - снижение скин-фактора, повышение эффективности обработки и производительности нефтегазовых скважин, устранение коррозионного воздействия на элементы нефтегазодобывающего и перерабатывающего оборудования и химического загрязнения извлекаемого пластового флюида. В способе комплексной водородной термобарохимической обработки призабойной зоны пласта раздельно-последовательную закачку первой и второй смесей горюче-окислительных и гидрореагирующих составов (ГОС-ГРС) производят в буферной жидкости - дибромпропане в соотношении (ГОС-ГРС):буфер 5:1. Первую смесь ГОС-ГРС плотностью 1,5-1,65 г/см3 закачивают в объеме, равном объему эксплуатационной колонны от забоя до уровня нижних отверстий перфорации. Затем задавливают в призабойную зону пласта в объеме, превышающем внутренний объем эксплуатационной колонны в интервале зоны перфорации, агрегативно устойчивую наносуспензию с гидрореагирующим составом на основе алюмогидриднатриевого композита плотностью 1,3-1,45 г/см3 с дисперсной фазой в количестве 5-50%, содержащейся в дисперсионной среде дизельного топлива и растворителя, в качестве которого используют дибромпропан. Затем сверху на первую смесь ГОС-ГРС доставляют вторую смесь ГОС-ГРС большей плотностью - 1,65-1,98 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью ГОС-ГРС. 1 з.п. ф-лы, 4 ил., 1 табл.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для разработки трудноизвлекаемых запасов нефти и газа, увеличения проницаемости продуктивного пласта, стимулирования выхода пластовых флюидов нефтяных, газовых и газоконденсатных низкопроницаемых пластов, восстановления дебита малопродуктивных скважин.

Известен способ комплексного водородного и термобарохимического воздействия на призабойную зону продуктивного пласта (Пат. Украины 102501, E21B 43/24, E21B 43/25, 2013), включающий закачку через насосно-компресcорные трубы раздельно-последовательно гидрореагирующего состава (ГРС) алюмогидрида натрия (АГН) и/или алюмогидриднатриевого композита (АГНК) с доставкой гидрореагирующего состава, размещенного в герметичных мини-контейнерах из полимерного материала, с весовым содержанием ГРС - 1-3 грамма в составе технологических жидкостей, в качестве которых используются горюче-окислительные составы на основе комплексных солей.

Известный способ низкоэффективен при обработке продуктивных пластов смешанных пород с высокой степенью кольматации афальто-смоло-парафиновыми отложениями (АСПО), так как активность кислот, высвобождаемых и образуемых в ходе химических реакций, нейтрализуется компонентами с высоким pH, а водород начинает генерироваться только после разрушения мини-контейнеров с ГРС, что существенно снижает эффективность процессов диффузии и фильтрации смеси других активных газов в пласт и не позволяет в полной мере реализовать энергетический и химический потенциал системы ГОС-ГРС в поровом пространстве призабойной зоны пласта (ПЗП).

Известен способ термобарохимической обработки продуктивного пласта (Пат. Украины 86886, E21B 43/00, E21B 43/18, E21B 43/26, Бюл. № 9, 2009), включающий доставку ГРС, буферной жидкости и воды в зону перфорации продуктивного пласта разделенными объемами с послойным продавливанием создаваемым в НКТ поршневым давлением, при этом доставку ГРС производят в объеме суспензии инертной буферной жидкости, в качестве которой используют хлорпроизводные углеводородов, например тетрахлорметан в объемном соотношении ГРС:буфер = 1:(0,6-2,0), соответственно.

Известный способ с использованием в качестве буферной жидкости тетрахлорметана ограничен в применении из-за высокой коррозионной активности хлорсодержащих соединений, приводящих к разрушению конструктивных элементов скважинного и нефтегазоперекачивающего оборудования, химическому "отравлению" и разрушению дорогостоящих катализаторов нефтеперерабатывающих предприятий. При этом, способ малоэффективен при обработке пластов с положительным скин-фактором, низкой начальной проницаемостью, высокой обводненностью, кольматированных эмульсией типа "вода-углеводород" или асфальто-смоло-парафиновыми отложениями (АСПО), когда фильтрация в пласт продуктов первичных реакций, проходящих в эксплуатационной колонне, затруднена или полностью отсутствует.

Наиболее близким по совокупности признаков и достигаемому результату является способ комплексной водородной термобарохимической обработки продуктивного пласта (Пат. РФ 2628342, 2016), включающий раздельно-последовательную доставку на забой через насосно-компрессорные трубы составов: гидрореагирующих, на основе алюмогидриднатриевого композита, и горюче-окислительных, на основе комплексных солей, с закачкой на предварительной стадии агрегативно устойчивой наносуспензии гидрореагирующего состава (АГНК) с дизельным топливом и органическим растворителем, в качестве которого используют перхлорэтилен (C2Cl4), с последующей продавкой последней в ПЗП пласта до начала реагирования основных составов (ГОС-ГРС).

Известный способ недостаточно эффективен при использовании в составе дисперсионной среды агрегативно устойчивой наносуспензии в качестве химического растворителя – перхлорэтилена, который при взаимодействии с водой, в том числе пластовой, образует трихлоруксусную и соляную кислоты, что приводит к преждевременному реагированию гидрореагирующих составов еще на стадии доставки с генерированием водорода и потерей части энергетического потенциала системы. При этом, используемый растворитель способствует активной хлористоводородной коррозии конструктивных элементов нефтегазодобывающего оборудования и химическому загрязнению – повышенному содержанию хлорорганических соединений в извлекаемом пластовом флюиде.

Сущность изобретения

Задачей предлагаемого изобретения является, повышение эффективности обработки, снижение скин-фактора и производительности нефтегазовых скважин, в том числе с трудноизвлекаемыми запасами, снижение коррозионного воздействия на элементы нефтегазодобывающего и перерабатывающего оборудования, а также химического загрязнения извлекаемого пластового флюида.

Технический результат состоит в реализации эффективной доставки рабочих смесей в составе реакционно-устойчивого буферного компонента, инертного при взаимодействии с водой, в том числе пластовой, и конструктивными элементами скважинного оборудования, функционирующего также в качестве растворителя в составе гидрореагирующей наносуспензии с высокой степенью проникновения в поровое пространство для эффективного растворения кольматирующих внутрипоровое пространство тяжелых углеводородов и АСПО продуктивных пластов, что позволяет устранить гидродинамическое несовершенство загрязненной, в том числе, остатками буровых растворов околоскважинной зоны.

Поставленная задача достигается тем, что в способе комплексной водородной термобарохимической обработки призабойной зоны пласта, включающем раздельно-последовательную доставку на забой через насосно-компрессорные трубы первой смеси горюче-окислительного и гидрореагирующего составов (ГОС-ГРС), задавливание в призабойную зону пласта агрегативно устойчивой наносуспензии с гидрореагирующим составом на основе алюмогидриднатриевого композита, дизельного топлива и растворителя, с последующей доставкой второй большей плотности смеси ГОС-ГРС, согласно изобретению, закачку первой и второй смесей горюче-окислительных и гидрореагирующих составов производят в буферной жидкости – дибромпропане в соотношении (ГОС-ГРС):буфер 5:1, при этом первую смесь горюче-окислительного и гидрореагирующего составов плотностью 1,5-1,65 г/см3 закачивают в объеме, равном объему эксплуатационной колонны от забоя до уровня нижних отверстий перфорации, а задавливаемая непосредственно в призабойную зону пласта в объеме, превышающем внутренний объем эксплуатационной колонны в интервале зоны перфорации, агрегативно устойчивая наносуспензия с гидрореагирующим составом на основе алюмогидриднатриевого композита плотностью 1,35-1,45 г/см3, с дисперсной фазой в количестве 5-50% в дисперсионной среде углеводородного растворителя – дизельного топлива и органического растворителя, в качестве которого используют дибромпропан, при количественном содержании компонентов жидкой фазы, взятых в пропорциональном соотношении при равенстве плотностей жидкой и твердой фаз наносуспензии, затем сверху на первую смесь ГОС-ГРС доставляют вторую смесь ГОС-ГРС плотностью 1,65-1,98 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов. Кроме того, компоненты для приготовления агрегативно устойчивой наносуспензии гидрореагирующего состава: алюмогидриднатриевый композит, дизельное топливо и дибромпропан, взятые в заданном соотношении, обеспечивающем равенство плотности дисперсионной среды и рентгеновской плотности твердой дисперсной фазы, подвергают предварительной обработке в роторном диспергаторе-кавитаторе до дисперсности твердой фазы алюмогидриднатриевого композита 0,1-10 мкм.

Высокая плотность первой и второй смесей ГОС-ГРС в буферном дибромпропане обеспечивает их эффективную доставку, качественное перемешивание в колонне и надежную реакционную эффективность. При этом, высокая плотность и смачивающая способность дибромпропана в составе агрегативно устойчивой наносуспензии обеспечивает активную фильтрацию последнего в породу пласта через перфорационные отверстия на большую глубину с эффективным растворением углеводородов, в том числе, тяжелых и АСПО, кольматирующих внутрипоровое пространство продуктивного пласта, и не приводит к образованию хлорорганических соединений.

На фиг. 1 представлена начальная стадия обработки после закачки первой смеси ГОС-ГРС на забой; на фиг. 2 – стадия обработки по закачиванию и задавливанию в пласт агрегативно устойчивой наносуспензии; на фиг. 3 – распространение газов и растворителя в поровом пространстве после обработки агрегативно устойчивой наносуспензией, закачка второй смеси ГОС-ГРС, начало взаимодействия первой и второй смесей системы ГОС-ГРС; на фиг. 4 – завершающая стадия обработки, распределение газов и других активных веществ в пласте, образуемых в ходе реакций ГОС-ГРС.

Агрегативно устойчивая наносуспензия плотностью 1,35-1,45 г/см3 с дисперсной твердой фазой гидрореагирующего состава включает алюмогидриднатриевый композит в количестве 5-50%, содержащейся в дисперсионной среде смеси дизельного топлива и растворителя, в качестве которого используют дибромпропан, взятых в пропорциональном соотношении, обеспечивающем равенство плотностей жидкой и твердой фаз. Cостав наносуспензии предварительно обрабатывают в роторном диспергаторе-кавитаторе до дисперсности твердой фазы алюмогидриднатриевого композита 0,1-10 мкм.

Благодаря предварительной фильтрации в пласт агрегативно устойчивой наносуспензии с буферным дибромпропаном в качестве растворителя, инертного по отношению к пластовой воде, происходит низкотемпературная с генерированием водорода обработка породы пласта, которая позволяет снизить вязкость тяжелых углеводородов в призабойной зоне пласта, повысить ее проницаемость, очистить поровое пространство от кольматирующих нерастворимых соединений до проведения основных химических реакций и интенсифицировать химические преобразования уже в разогретом поровом пространстве породы, то есть снизить скин-фактор, повысив эффективность комплексного водородного термобарохимического воздействия, которое не приводит к распространению хлорорганики.

Способ заключается в следующем. После глушения скважины путем заполнения эксплуатационной колонны 1 (фиг.1) технической водой, производят допуск насосно-компрессорных труб (НКТ) 2 на глубину 1-2 м от забоя 3 и закачку системы ГОС-ГРС (горюче-окислительный-гидрореагирующий составы) первого состава плотностью 1,5-1,65 г/см3, в буферной жидкости дибромпропане в соотношении (ГОС-ГРС):буфер 5:1.

Объем системы ГОС-ГРС (горюче-окислительный - гидрореагирующий составы) первого состава определяют из расчета заполнения объема 4 (фиг.2) от забоя 3 до уровня нижних отверстий зоны 5 интервала перфорации.

Затем при поднятых НКТ 2 до середины интервала 5 перфорации при открытом затрубном пространстве на циркуляции производят закачку агрегативно устойчивой наносуспензии до заполнения объема 6 эксплуатационной колонны 1 в зоне интервала перфорации 5, после чего закрывают затрубное пространство и задавливают весь объем агрегативно устойчивой наносуспензии в продуктивный пласт 7.

Фильтрация наносуспензии гидрореагирующего состава в поровое пространство пласта сопровождается экзотермическими реакциями алюмогидриднатриевого композита с пластовой водой и жидкостью глушения с выделением тепла и генерированием водорода.

В результате протекания первичных реакций генерируемый непосредственно в продуктивном пласте водород фильтруется в поры, трещины и микротрещины коллектора, увеличивая его проницаемость и обеспечивая фильтрацию в пласт горячих углеводородного и органического растворителей. Химический процесс гидролиза данного типа гидрореагирующего состава завершается образованием щелочной среды, обладающей свойствами поверхностно-активных веществ (ПАВ), действие которой улучшает фильтрационную способность ПЗП. Происходит полное обезвоживание порового пространства, с образованием атомарного и молекулярного водорода, активирующего процессы фильтрации с повышением температуры в поровом пространстве, что приводит к снижению вязкости АСПО, повышению химической активности углеводородного и органического растворителей.

Проникающий в пласт в зоне перфорации в составе агрегативно-устойчивой наносуспензии дибромпропан благодаря высокой устойчивости при взаимодействии с водой и АГНК работает в качестве растворяющего углеводороды и АСПО компонента, растворяющая способность которого существенно повышается с ростом температуры в зоне обработки в результате экзотермических реакций ГРС (АГНК) с пластовой водой.

Функционирующий как активный углеводородный растворитель дибромпропан, благодаря своим свойствам текучести и низкого поверхностного натяжения, обеспечивает быструю и глубокую фильтрацию агрегативно-устойчивой наносуспензии в пласт. Высокая плотность дибромпропана способствует дополнительному механическому воздействию, обеспечивающему эффективную чистящую способность при растворении кольматирующих внутрипоровое пространство тяжелых углеводородов, АСПО и устранение гидродинамического несовершенства загрязненной околоскважинной зоны, повышение эффективности химической обработки ПЗП.

Кроме того, высокая плотность дибромпропана позволяет проводить обработку скважин с высоким и аномально высоким пластовым давлением, когда для глушения скважины необходимо использовать жидкости повышенной плотности, а стабильность показателя pH позволяет предотвратить коррозионное воздействие на элементы нефтегазодобывающего и нефтеперерабатывающего оборудования.

После этого поднимают НКТ 3 (фиг.3) на 20-30 м над верхними отверстиями перфорации 5 продуктивного пласта и производят закачку системы ГОС-ГРС второго состава в буферной жидкости дибромпропане в соотношении (ГОС-ГРС):буфер 5:1, обеспечивающей их плотность 1,65-1,98 г/см3 в объеме 8, достаточном для эффективного реагирования с первой смесью ГОС-ГРС.

При этом, закачка первой и второй систем горюче-окислительных и гидрореагирующих составов (ГОС-ГРС) в буферном дибромпропане обеспечивает надежную доставку в инертном высокостабильном веществе в зону обработки пласта.

При попадании системы ГОС-ГРС (горюче-окислительный - гидрореагирующий составы) второго состава в первый состав ГОС-ГРС (горюче-окислительный-гидрореагирующий составы) в разогретой зоне эксплуатационной колонны 1 под действием силы тяжести, обусловленной разностью их плотностей, происходит проникновение второй системы ГОС-ГРС через слой первой (фиг.4), перемешивание первой и второй систем технологических жидкостей (ГОС-ГРС) с активным реагированием компонентов при их контакте и инициированием серии экзотермических химических реакций с генерированием смеси газов Н2, СО, СО2, NO2, NН3, N2O5, образованием кислот соляной и азотной и повышением температуры до 250-370оC, достаточной для эффективной обработки ПЗП.

Скорость и полнота реализации термодинамического потенциала энергоемких топливных систем регулируется составами и соотношениями исходных компонентов.

Генерируемый в ходе экзотермического термохимического процесса водород существенно улучшает проницаемость коллектора и способствует фильтрации химически активных компонентов реакций ГОС-ГРС в пласт и их реагированию с минеральной частью пласта и кольматантами. На высокотемпературной стадии процесса в условиях высоких давлений, в присутствии активированного водорода и катализаторов реализуется процесс гидрокрекинга АСПО с образованием газовых и дистиллятных фракций.

Лабораторные исследования работоспособности заявленного способа для оценки эффективности комплексной водородной термобарохимической обработки, снижения скин-фактора и увеличения производительности (дебита) скважины проведены на экспериментальном стенде для комплекcных исследований проницаемости и фильтрационных характеристик на реальных кернах горной породы нефтенасыщенных пластов с высоким содержанием АСПО, в том числе, с остатками буровых растворов, с моделированием воздействия агрегативно устойчивой наносуспензией и продуктов реакций систем ГОС-ГРС и прокачкой после каждого этапа обработки через керны нефти для определения изменения их фильтрационных характеристик.

Для моделирования пластовых условий и обеспечения фильтрации только через тело кернов их боковые поверхности предварительно герметизировали путем обжима с заданным горным давлением (130 атм) и прогревали до заданной температуры (50 оС). Через керны последовательно прокачивали в равных объемах пластовую воду и нефть при давлении 10 атм. Затем прокачивали агрегативно устойчивую наносуспензию АГНК с дисперсионной средой взятых в заданных соотношениях дизельного топлива с дибромпропаном и, для сравнения, с перхлорэтиленом при давлении 30 атм с регистрацией параметров скорости фильтрации и объемов выделенного водорода на выходе из кернов. После чего проводили замеры параметров при моделировании термогазохимического воздействия на керны системой ГОС-ГРС. Усредненные значения параметров, полученных в ходе экспериментов, приведены в Таблице 1.

В результате проведенных замеров проницаемости керна по нефти, которая до обработки составляла 87 мД, после обработки наносуспензией на основе перхлорэтилена с учетом термогазохимического воздействия систем ГОС-ГРС составила 149 мД, а после обработки наносуспензией на основе дибромпропана с последующим термогазохимическим воздействием систем ГОС-ГРС – 163 мД, что является следствием более эффективной последней обработки керна.

Таблица 1

Параметры измерений Наносупензия на основе перхлорэтилена Наносупензия на основе дибромпропана
Скорость фильтрации наносуспензии через керн, мл/с 0,01 0,013
Объем водорода, полученного на выходе из керна, обработанного наносуспензией, см3 1,9 3,4
Скорость фильтрации активных газов и других продуктов реакций ГОС-ГРС через керн, предварительно обработанный наносуспензией, см3 0,19 0,22
Температура активных газов и продуктов реакций на выходе из керна после предварительной обработки наносуспензией и последующей обработки ГОС-ГРС, оС 198 211
Скорость фильтрации нефти через керн, обработанный только наносуспензией, мл/с 0,02 0,022
Скорость фильтрации нефти через керн после предварительной обработки наносуспензией и последующей обработки ГОС-ГРС, мл/с 0,031 0,034

1. Способ комплексной водородной термобарохимической обработки призабойной зоны пласта, включающий раздельно-последовательную доставку на забой через насосно-компрессорные трубы первой смеси горюче-окислительного и гидрореагирующего составов (ГОС-ГРС) с продавливанием агрегативно устойчивой наносуспензии с гидрореагирующим составом на основе алюмогидриднатриевого композита, дизельного топлива и растворителя в призабойную зону пласта и последующую доставку второй большей плотности смеси (ГОС-ГРС), отличающийся тем, что закачку первой и второй смесей горюче-окислительных и гидрореагирующих составов производят в буферной жидкости - дибромпропане в соотношении (ГОС-ГРС):буфер 5:1, при этом первую смесь горюче-окислительного и гидрореагирующего составов плотностью 1,5-1,65 г/см3 закачивают в объеме, равном объему эксплуатационной колонны от забоя до уровня нижних отверстий перфорации, затем задавливают непосредственно в призабойную зону пласта в объеме, превышающем внутренний объем эксплуатационной колонны в интервале зоны перфорации, агрегативно устойчивую наносуспензию с гидрореагирующим составом на основе алюмогидриднатриевого композита плотностью 1,3-1,45 г/см3 с дисперсной фазой в количестве 5-50%, содержащейся в дисперсионной среде дизельного топлива и растворителя, в качестве которого используют дибромпропан, при количественном содержании компонентов жидкой фазы, взятых в пропорциональном соотношении для обеспечения равенства плотностей жидкой и твердой фаз наносуспензии, затем сверху на первую смесь ГОС-ГРС доставляют вторую смесь ГОС-ГРС плотностью 1,65-1,98 г/см3 в объеме, достаточном для эффективного реагирования с первой смесью горюче-окислительного и гидрореагирующего составов.

2. Способ по п.1, отличающийся тем, что компоненты для приготовления агрегативно устойчивой наносуспензии гидрореагирующего состава: алюмогидриднатриевый композит, дизельное топливо и дибромпропан, взятые в заданном соотношении, обеспечивающем равенство плотности дисперсионной среды и рентгеновской плотности твердой дисперсной фазы, подвергают предварительной обработке в роторном диспергаторе-кавитаторе до дисперсности твердой фазы алюмогидриднатриевого композита 0,1-10 мкм.



 

Похожие патенты:

Изобретение относится к устройствам для обработки продуктивного пласта и может быть использовано для повышения производительности нефтяных скважин. Устройство для термоимплозионной обработки нефтяных скважин включает воздушную камеру с атмосферным давлением и заглушку, состоящую из коаксиально расположенных переходника и корпуса сгораемого элемента.

Изобретение относится к нефтедобывающей промышленности и, в частности, к термическим способам добычи сверхвязкой нефти и/или битума. Техническим результатом является повышение эффективности разработки залежи сверхвязкой нефти за счет увеличения зоны прогрева области дренирования горизонтальной добывающей скважины, снижение процента обводненности добываемой продукции из пласта за счет исключения прорыва теплоносителя в добывающую скважину.

Изобретение относится к нефтедобывающей промышленности, в частности к разработке залежей высоковязкой нефти или битумов при тепловом воздействии горизонтальными скважинами.

Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности разработки залежи, исключение прорыва попутно-добываемой воды к забою скважин, сохранение структуры пласта, выравнивание фронта вытеснения нефти и увеличение добычи нефти.

Изобретение относится к нефтяной промышленности. Технический результат - исключение остановки работы системы и ремонтов топочных элементов парогенератора из-за коррозионного разрушения, увеличение срока эксплуатации оборудования, повышение экологичности процесса.
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности паротеплового воздействия при разработке залежи сверхвязкой нефти, исключение нерационального расхода теплоносителя, раствора карбамида и углеводородного растворителя, снижение коррозии нефтяного оборудования, сокращение материальных затрат.

Изобретение относится к области нефтедобывающей промышленности и может быть использовано при разработке залежей тяжелых нефтей, нефтяных песков и битумов. Для осуществления способа разработки залежей тяжелых нефтей проводят вскрытие пласта по меньшей мере одной нагнетательной скважиной и вокруг нее по одинаковому радиусу несколькими эксплуатационными (добывающими) скважинами.
Изобретение относится к нефтедобывающей промышленности, в частности к способам увеличения добычи сверхвязкой нефти на месторождении. Техническим результатом является создание безаварийного способа разработки залежи сверхвязкой нефти на поздней стадии позволяющего с наименьшими затратами времени произвести строительство нового горизонтального ствола из добывающей скважины.

Изобретение относится к способам разработки залежей тяжелых нефтей и природных битумов. Технический результат - обеспечение возможности подземного облагораживания нефти с целью повышения эффективности нефтеотдачи карбонатных коллекторов, необратимое снижение вязкости тяжелой нефти и природных битумов, снижение доли тяжелых фракций и увеличение доли легких фракций тяжелой нефти и природных битумов.

Изобретение относится к нефтяной промышленности. Технический результат - эффективный охват прогревом всей залежи, примерно равный дебит во всех добывающих скважинах с экономией при строительстве за счет бурения на две добывающие скважины одной нагнетательной скважины, которая также прогревает межскважинное пространство.

Изобретение относится к нефтегазодобывающей промышленности, в частности к блокирующим составам, позволяющим изолировать и разобщать зоны поглощений технологических жидкостей при бурении и креплении скважин в интервалах интенсивного движения пластовых вод.
Наверх