Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы

Изобретение относится к области контроля качества при производстве кабелей. Технический результат – расширение арсенала технических средств. Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы заключается в том, что для определения эксцентриситета объекта измерения, например кабеля с медной жилой, используется устройство, содержащее электромагнитные и оптические датчики, осуществляют циклическое колебательное или возвратно-поступательное движение устройства для бесконтактного измерения смещения относительно проходящей через него кабельной жилы и при этом снимают показания уровня напряжения с электромагнитных датчиков, получая рабочую характеристику напряжения и положения жилы, с помощью которой определяют эксцентриситет жилы. 2 з.п. ф-лы, 4 ил.

 

Данный способ может быть использован при повышении качества и эффективности построения измерительных систем в области кабельного производства и в иных отраслях промышленности.

Известен способ определения положение токоведущего проводника, (расположен по адресу: https://pandia.ru/text/80/288/76409.php , дата публикации 03.10.2016 года подтверждена веб – архивом), измерение происходит в стационарных системах координат, использующих зависимость напряжения от положения объекта. При таком способе определения положения проводника в пространстве налагаются очень жесткие требования к стабильности поддержания тока в проводнике и его регулированию в широких пределах в зависимости от постоянно меняющегося сопротивления проводника и сложной цепи обратной связи.

Технический результат изобретения заключается в способе, позволяющем с высокой точностью измерять координаты электромагнитной системы, для определения степени смещения токоведущего проводника от геометрического центра кабельной жилы.

Сущность заявленного способа заключается в том, что для определения координат объекта измерения, например, кабеля с медной жилой используется устройство, имеющее подвижную систему координат, которая вне зависимости от состояния измеряемого объекта всегда позволяет перейти к решениям, как показано на фиг.1.

Определение эксцентриситета токопроводящей жилы

Для осуществления предложенного нами способа используется устройство, содержащее индуктор для наведения тока необходимой формы и частоты на измеряемый токоведущий проводник, данный элемент устройства располагается по ходу движения токоведущего проводника. Кроме этого устройство содержит несколько пар оптических датчиков для отслеживания положения кабеля расположенных по контору на вершине устройства в горизонтальной проекции, под углом 45° относительно друг друга.

Также устройство имеет четыре электромагнитных датчика в вертикальной проекции расположенных под углом 45° по отношению к горизонтальной плоскости.

При этом первая пара оптических датчиков, (жёлтый поток световых лучей) образует первую оптическую плоскость координат, а вторая пара оптических датчиков (красный поток световых лучей) расположена за первой парой на некотором расстоянии и повернута относительно неё на угол 45°, образует вторую оптическую плоскость координат. Меду первой и второй оптическими плоскостями по центру расположены четыре электромагнитных датчика, при этом датчики соединены встречно и образуют одно направление отсчёта на координатной плоскости. Таким образом, создаётся система электромагнитных координат, образующая декартовую систему координат на плоскости, расположенную под углом 45° к горизонту по отношению к осям устройства, на которых зафиксированы датчики. При этом измерение осуществляется вне зависимости от того будет ли система координат подвижна относительно неподвижного кабеля, или же наоборот кабель будет подвижен относительно неподвижной системы координат, или оба варианта в любом сочетании.

Оси с расположенными на них датчиками жёстко зафиксированы относительно друг друга на подвижном каркасе устройства (см. фиг.3). Подвижный каркас имеет одну степень свободы и в рабочем состоянии производит колебательные или возвратно-поступательные движения с определенным периодом ортогонально положению проходящей жилы (кабеля), пересекающей две оптические плоскости координат и таким же образом пересекающей оси устройства под углом 45°. Две оптические плоскости разнесены друг от друга на определенное расстояние и развёрнуты на угол 45° относительно друг друга. Такое положение плоскостей обеспечивает корректировку угла вхождения жилы в рабочую зону таким образом, что расчетный диаметр жилы не зависит от угла вхождения жилы, при этом в независимости положения жилы в рабочей зоне устройства, всегда точно определяется овальность жилы.

За одно поступательное перемещение системы координат осуществляется пересечение обеих электромагнитных осей.

Определение эксцентриситета жилы происходит в следующем порядке:

1. Определяются электромагнитные координаты минимума проходящей изолированной жилы. При этом используются данные оптической измерительной системы.

2. Из определенных электромагнитных координат минимума неизолированной жилы, хранящихся в памяти устройства, и вычисленных на этапе калибровки устройства, вычитаются текущие электромагнитные координаты минимума рабочей изолированной жилы.

При движении системы координат в направлении слева – направо на выходе схемы измерения по каждой из координат Х и У формируются графики рабочих характеристик, как показано на фиг.2, где S – положение объекта измерения, а U – напряжение на выходах схем измерения. В этом случае координаты минимумов парабол калибровочной характеристики Sx1 и Sy1 будут отличаться от координат минимумов парабол калибровочной характеристики Sx0 и Sy0 на величину смещения токоведущего проводника. Это смещение наблюдается по соответствующим координатам. В случае отсутствия смещения токоведущего проводника от геометрического центра жилы, координата минимума рабочей характеристики по оси Sх будет полностью совпадать с координатой минимума калибровочной характеристики, при этом сама форма параболической зависимости рабочей характеристики (крутизна) может существенно отличаться от формы калибровочной характеристики.

Электромагнитные координаты рассчитываются при помощи двух оптических плоскостей. Поскольку направление электромагнитных координат не совпадает с направлением оптических координат и составляет угол +22,52° и -22,5° для каждой из оптической координатной плоскости, то при расчётах используется виртуальная система координат, получаемая простым поворотом каждой из оптических координатных плоскостей на соответствующий угол. Виртуальная система координат полностью совпадает с электромагнитной системой координат, совмещена с ней и является основой для точного определения положения графиков вдоль оси S как показано на фиг.1.

Осуществление предложенного нами способа:

Через отверстие, выполненное по центру в корпусе устройства для бесконтактного измерения смещения токоведущего проводника, протягивается кабель, содержащий токоведущий проводник (жилу). При этом в памяти устройства после проведения калибровки хранятся электромагнитные координаты минимума неизолированной жилы. При помощи индуктора на токоведущий проводник наводится ток заданной частоты и формы. Осуществляя циклическое колебательное движение измерительной системы, относительно проходящего в измеряемой зоне кабеля происходит синхронное снятие показаний уровня напряжения с электромагнитных датчиков и соответствующих этим показаниям координат положения кабеля в измеряемой зоне. Из определенных электромагнитных координат минимума неизолированной жилы, хранящихся в памяти устройства, и вычисленных на этапе калибровки устройства, вычитаются текущие электромагнитные координаты минимума рабочей изолированной жилы. После обработки результатов измерений определяется смещение токоведущего проводника относительно геометрического центра измеряемого кабеля. Результаты измерений в графическом виде отображаются на экране ЭВМ или любого портативного устройства для вычислений и обработки данных.

1. Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы, заключающийся в том, что: используют устройство для бесконтактного измерения указанного смещения, которое содержит индуктор для наведения тока необходимой формы и частоты на токоведущий проводник контролируемой кабельной жилы, а также электромагнитные датчики и несколько пар оптических датчиков для отслеживания положения кабельной жилы, при этом датчики жестко зафиксированы относительно друг друга на подвижном каркасе устройства; исследуемую кабельную жилу протягивают через отверстие, выполненное по центру в корпусе устройства для бесконтактного измерения смещения; при помощи индуктора на токоведущий проводник кабельной жилы наводят ток заданной частоты и формы; осуществляют циклическое колебательное или возвратно-поступательное движение устройства для бесконтактного измерения смещения относительно проходящей через него кабельной жилы и при этом снимают показания уровня напряжения с электромагнитных датчиков, получая рабочую характеристику с параметрами U и S, где U – напряжение на выходе схемы измерения, а S – положение кабельной жилы; при получении минимума значения U данной рабочей характеристики оптическими датчиками определяют координаты кабельной жилы; сопоставляют указанные координаты исследуемой кабельной жилы с координатами неизолированной жилы, при которых наблюдается минимум значения U ее рабочей характеристики, используемой на этапе калибровки устройства для бесконтактного измерения указанного смещения, и определяют искомую величину смещения проводника от геометрического центра кабельной жилы; результаты измерений в графическом виде отображают на экране ЭВМ или любого портативного устройства для визуализации результата.

2. Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы по п.1, отличающийся тем, что используют четыре электромагнитных датчика.

3. Способ бесконтактного измерения смещения токоведущего проводника от геометрического центра кабельной жилы по п.1, отличающийся тем, что используют две пары оптических датчиков.



 

Похожие патенты:

Группа изобретений относится к магнитным подшипникам. Способ для контроля устройства магнитного подшипника для электрической вращающейся машины, содержащего первую пару по существу диаметрально противолежащих датчиков и вторую пару по существу диаметрально противолежащих датчиков, которые расположены со смещением относительно первой пары датчиков на угол (α), заключается в следующем.

Настоящее изобретение раскрывает устройство для определения износа скользящей муфты направляющего подъемника стального троса шахтного ствола и способ его определения.

Изобретение относится к измерительной технике, применяемой для контроля состояния трубопроводов, и предназначено для определения толщины отложений на внутренней поверхности трубопроводов, в частности, для определения толщины асфальтосмолопарафиновых отложений в нефтепроводах.

Преобразователь напряжения разбаланса мостовой схемы в частоту или скважность относится к информационно-измерительной технике и может быть использован в прецизионных преобразователях физических параметров (линейного ускорения, давления), магнитометрах, устройствах измерения гальванически развязанных токов, в электротермических преобразователях (расходомеры) в частоту или скважность.

Заявляемый способ относится к измерительной технике, в частности к способам установки тензорезисторов, предназначенных для работы в условиях открытого космоса. Способ установки тензорезисторов заключается в том, что склеивание посадочных поверхностей тензорезисторов и изделия выполняется в термобарокамере при давлении не более 1 ⋅ 10-4 Па с помощью клеевого состава из эпоксидной смолы и отвердителя, затвердевающего при температуре более 80°С, после выдерживания изделия до затвердевания клеевого состава, температура изделия опускается до 25°С, затем проводится калибровка измерительной системы относительно механических и температурных воздействий на изделие в условиях работы в открытом космосе.

Настоящее изобретение относится к датчикам давления такого типа, который используется для восприятия давления рабочей текучей среды в промышленных процессах, более конкретно настоящее изобретение относится к датчикам давления, которые заполнены заполняющей текучей субстанцией.

Использование: для определения координат геометрического центра двумерной области. Сущность изобретения заключается в том, что электроемкостный преобразователь содержит диэлектрическую пластину, общий электрод и множество печатных измерительных электродов, причем измерительные электроды множества расположены на поверхности диэлектрической пластины в границе измерительной области и образуют первую и вторую измерительные части, измерительные электроды первой измерительной части выполнены в виде геометрических фигур, суммарная ширина которых вдоль направления оси абсцисс в функции расстояния вдоль направления оси ординат изменяется линейно, измерительные электроды второй измерительной части выполнены в виде геометрических фигур, дополняющих геометрические фигуры измерительных электродов первой измерительной части до образования постоянной суммарной ширины в функции расстояния вдоль направления оси ординат.

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют распределенные термопрофилемеры, содержащие по n модулированных по погонной чувствительности по функциям {<p, (z)}, проводников.

Изобретение относится к измерительной технике, а именно к средствам измерения относительных деформаций и температуры. Устройство содержит входящие в состав мостов Уитстона тензорезисторы и термопары, размещенные на объекте испытания ОИ, коммутатор для подключения термопар, коммутатор мостов Уитстона, аналогово-цифровой преобразователь АЦП, персональный компьютер ПК, источник питания.

Изобретение относится к метрологии. Устройство контроля состояния сооружений содержит радиочастотные метки-транспондеры, блок предварительной обработки сигналов, включающий плату аналого-цифрового преобразования, линию связи - цифровую шину, конвертор, компьютер, дисплей, устройство звуковой сигнализации, метки-индикаторы, считывающее устройство-ридер.

Изобретение относится к способу получения параметра, представляющего высоту верхней поверхности материала, уложенного в коксовой печи, относительно опорной плоскости. Такой способ относится, в частности, к измерению уровня насыпного угля или кокса. Предложен способ получения параметра, представляющего высоту (Н) верхней поверхности (29) материала (20), помещенного в коксовую печь (10), относительно опорной плоскости (Р), содержащий следующие этапы: обеспечение наличие датчика (47), расположенного над верхней поверхностью на рабочем расстоянии (D1) от опорной плоскости, при этом датчик и материал формируют конденсатор, характеризующийся ёмкостью; получение по меньшей мере одного ёмкостного сигнала, представляющего указанную ёмкость; получение по меньшей мере одного сигнала (S2) расстояния с использованием ёмкостного сигнала, при этом сигнал расстояния представляет расстояние (D2) между датчиком и верхней поверхностью в вертикальном направлении (Z), и получение указанного параметра, представляющего высоту, с использованием сигнала расстояния и рабочего расстояния. Технический результат – повышение точности и достоверности получаемых данных. 6 н. и 9 з.п. ф-лы, 5 ил.
Наверх