Устройство дистанционного мониторинга систем жизнеобеспечения специальных объектов

Изобретение относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.д.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них. Технический результат состоит в повышении помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам. Для этого устройство содержит диспетчерский пункт и системы жизнеобеспечения сложных объектов. Диспетчерский пункт содержит источник аналоговых сообщений, модулятор с двойным видом модуляции, генератор несущей частоты, амплитудный модулятор, фазовый манипулятор, источник дискретных сообщений, передатчик, первый гетеродин, первый смеситель, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, приемопередающую антенну, приемник, второй усилитель мощности, второй гетеродин, второй смеситель, усилитель второй промежуточной частоты, амплитудный ограничитель, синхронный детектор, перемножитель, полосовой фильтр, фазовый детектор, блок регистрации и анализа, усилитель суммарной частоты, третий гетеродин и третий смеситель. 5 ил.

 

Предлагаемое устройство относится к области радиосвязи и может быть использовано для передачи сигналов управления с диспетчерского пункта на системы жизнеобеспечения (теплоснабжения, водоснабжения, газоснабжения, электроснабжения, канализации, вентиляции и т.п.) сложных объектов, а также для сбора информации с указанных систем для централизованного контроля и управления технологическими процессами на них.

Традиционно эксплуатация систем жизнеобеспечения как гражданских, так и военных объектов финансируется по, так называемому, «остаточному принципу». Такой подход привел к тому, что большая часть оборудования систем жизнеобеспечения выработала свой ресурс, и его износ составляет от 50 до 80%. Особенно тяжелая ситуация сложилась в теплоснабжении объектов.

Суровые климатические условия, характерные для большей части территории России, предопределяют теплоснабжение как наиболее значимый как в социальном, так и в техническом отношении сектор экономики.

Около 50% объектов теплоснабжения и тепловых сетей требуют замены, не менее 15% находятся в аварийном состоянии. На каждые 100 км тепловых сетей ежегодно регистрируется в среднем 70 повреждений. Потери тепла в тепловых сетях достигают 30%, капитального ремонта или полной замены требуют 80% общей протяженности сетей.

Основными причинами подобного состояния систем теплоснабжения являются: износ оборудования и тепловых сетей, дефицит финансирования, слабое управление и другие.

Для решения накопившихся в последние десятилетия проблем как в теплоснабжении, так и в других системах жизнеобеспечения сложных объектов, необходимо осуществление комплексных мер, среди которых важное место занимают устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов.

Известны устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов (авт. свид. СССР NN 830.304, 911.464, 930.254, 1.075.426, 1.233.105, 1.276.594, 1.291.984, 1.522.417, 1.626.428, 1.663.784, 1.665.531, 1.780.080, 1.798.738; патенты РФ NN 2.001.531, 2.013.018, 2.019.052, 2.156.551, 2.214.691, 2.215.370, 2.264.034, 2.286.026, 2.313.911, 2.329.608, 2.447.598, 2.504.903, 2.614.016; патенты США NN 4.328.581, 5.058.136, 5.077.538, 5.499.760, 5.856.027, 6.128.476; патент Франции N 2.438.877; патенты ЕР NN 0.405.512, 0.486.830, 0.669.740; патенты WO NN 96/10.309, 97/20.438; Тепляков И.М. и др. Радиосистемы передачи информации. М.: Радио и связь, 1982, с. 237, рис. 12.2 и другие).

Из известных устройств наиболее близким к предлагаемому является «Региональная информационная система связи» (патент РФ N 2.264.034, Н04В 7/00, 2004), которая и выбрана в качестве базового объекта. Известная система дуплексной радиосвязи построена с использованием супергетеродинных приемников, в которых одно и тоже значение второй промежуточной частоты Wпр2 может быть получено в результате приема сигналов на четырех частотах: W1, W2, Wз1 и Wз2; т.е.

Wпр2=W1-Wr1, Wпр2=Wr1-Wз1,

Wпр2=Wr2-W2, Wпр2=Wз2-Wr2.

Следовательно, если частоты настройки W1 и W2 принять за основные каналы приема, то наряду с ними будут иметь место зеркальные каналы приема, частоты Wз1 и Wз2 которых отличаются от частот W1 и W2 на 2Wпр2 и расположены симметрично (зеркально) относительно частот Wr1 и Wr2 гетеродинов (рис. 2, 4). Преобразование по зеркальным каналам происходит с тем же коэффициентом преобразования Кпр, что и по основным каналам приема. Поэтому они наиболее существенно влияют на помехоустойчивость и достоверность обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов.

Кроме зеркальных существуют и другие дополнительные (комбинационные) каналы приема.

В общем виде любые комбинационные каналы приема имеют место при выполнении условий:

Wпр2=(±m Wki±n Wr1),

Wпр2=(±m Wkj±n Wr2),

где Wki, Wkj - частоты i-го и j-го комбинационных каналов приема;

m, n, i, j - целые положительные числа.

Наиболее вредными комбинационными каналами приема являются каналы, образующиеся при взаимодействии первых гармоник частот сигналов с гармониками частот гетеродинов малого порядка (второй, третьей), так как чувствительность супергетеродинных приемников по этим каналам близка к чувствительности основных каналов приема. Так, четырем комбинационным каналам приема при m=1 и n=2 соответствуют частоты:

Wk1=2 W r1 - Wпр2, Wk2=2Wr1+Wпр2,

Wk3=2 Wr2 - Wпр2, Wk4=2 Wr2+Wпр2.

Наличие ложных сигналов (помех), принимаемых по дополнительным (зеркальным и комбинационным) каналам приема, приводит к снижению помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов.

Технической задачей изобретения является повышение помехоустойчивости и достоверности обмена аналоговой и дискретной информацией между диспетчерским пунктом и системами жизнеобеспечения сложных объектов путем подавления ложных сигналов (помех), принимаемых по дополнительным каналам.

Поставленная задача решается тем, что устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов, содержащее, в соответствии с ближайшим аналогом, диспетчерский пункт и системы жизнеобеспечения сложных объектов, при этом диспетчерский пункт и каждая система жизнеобеспечения сложных объектов содержат последовательно включенные источник аналоговых сообщений, амплитудный модулятор, второй вход которого соединен с выходом генератора несущей частоты, фазовый манипулятор, второй вход которого соединен с выходом источника дискретных сообщений, первый смеситель, второй вход которого соединен с выходом первого гетеродина, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, второй усилитель мощности и второй смеситель, второй вход которого соединен с выходом второго гетеродина, последовательно включенные усилитель второй промежуточной частоты, амплитудный ограничитель, синхронный детектор и блок регистрации и анализа, последовательно подключенные к выходу амплитудного ограничителя перемножитель, второй вход которого соединен с выходом первого гетеродина, полосовой фильтр и фазовый детектор, второй вход которого соединен с выходом второго гетеродина, а выход подключен к второму входу блока регистрации и анализа, между диспетчерским пунктом и каждой системой жизнеобеспечения сложных объектов устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте, при этом на диспетчерском пункте эти сигналы излучаются на частоте

W1=Wпр1=Wr2,

где Wпр1 - первая промежуточная частота,

Wr2 - частота второго гетеродина,

а принимаются на частоте

W2=Wпр3=Wr1,

где Wпр3 - третья промежуточная частота,

Wr1 - частота первого гетеродина,

а на каждой системе жизнеобеспечения сложных объектов, наоборот, сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте излучаются на частоте W2, а принимаются на частоте W1, частоты Wr1 и Wr2 гетеродинов разнесены на значение второй промежуточной частоты

Wr2-Wr1=Wпр2,

на каждой системе жизнеобеспечения сложных объектов блок регистрации и анализа выполнен в виде исполнительного блока, отличается от ближайшего аналога тем, что диспетчерский пункт и каждая система жизнеобеспечения сложных объектов снабжены усилителем суммарной частоты, третьим гетеродином и третьим смесителем, причем к выходу второго смесителя последовательно подключен усилитель суммарной частоты и третий смеситель, второй вход которого соединен с выходом третьего гетеродина, а выход подключен к входу усилителя второй промежуточной частоты.

Причин подавления ложных сигналов (помех), принимаемых по дополнительным каналам, основан на двойном преобразовании несущей частоты принимаемого сигнала. Причем при первом преобразовании несущая частота принимаемого сигнала преобразуется "вверх", т.е. используется суммарная частота принимаемого сигнала и частота второго гетеродина, а при втором преобразовании полученная суммарная частота преобразования "вниз", т.е. используется вторая промежуточная (разностная) частота. Указанные операции обеспечивают подавление ложных сигналов (помех), принимаемых по дополнительным каналам.

Структурная схема устройства дистанционного мониторинга систем жизнеобеспечения сложных объектов представлена на фиг. 1 и 3. Частотные диаграммы, иллюстрирующие принцип преобразования сигналов, показаны на фиг. 2 и 4. Временные диаграммы, поясняющие принцип работы устройства, изображены на фиг. 5.

Диспетчерский пункт (система жизнеобеспечения) содержит последовательно включенные источник 1.1 (1.2) аналоговых сообщений, амплитудный модулятор 4.1 (4.2), второй вход которого соединен с выходом генератора 3.1 (3.2) несущей частоты, фазовый манипулятор 5.1 (5.2), второй вход которого соединен с выходом источника 6.1 (6.2) дискретных сообщений, первый смеситель 9.1 (9.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), усилитель 10.1 (10.2) первой промежуточной частоты, первый усилитель 11.1 (11.2) мощности, дуплексер 12.1 (12.2), вход-выход которого связан с приемопередающей антенной 13.1 (13.2), второй усилитель 15.1 (15.2) мощности, второй смеситель 17.1 (17.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), усилитель 25.1 (25.2) суммарный частоты, третий смеситель 27.1 (27.2), второй вход которого соединен с выходом третьего гетеродина 26.1 (26.2), усилитель 18.1 (18.2) второй промежуточный частоты, амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), второй вход которого соединен с выходом усилителя 18.1 (18.2) второй промежуточной частоты, и блок 24.1 (исполнительный блок 24.2) регистрации и анализа.

К выходу амплитудного ограничителя 19.1 (19.2) последовательно подключены перемножитель 21.1 (21.2), второй вход которого соединен с выходом первого гетеродина 8.1 (8.2), полосовой фильтр 22.1 (22.2) и фазовый детектор 23.1 (23.2), второй вход которого соединен с выходом второго гетеродина 16.1 (16.2), а выход подключен ко второму входу блока 24.1 (исполнительного блока 24.2) регистрации и анализа.

Последовательно включенные генератор 3.1 (3.2) несущей частоты, амплитудный модулятор 4.1 (4.2) и фазовый манипулятор 5.1 (5.2) образуют модулятор 2.1 (2.2) с двойным видом модуляции.

Первый гетеродин 8.1 (8.2), первый смеситель 9.1 (9.2), усилитель 10.1 (10.2) первой промежуточной частоты и первый усилитель 11.1 (11.2) мощности образуют передатчик 7.1 (7.2).

Второй усилитель 15.1 (15.2) мощности, второй гетеродин 16.1 (16.2), второй смеситель 17.1 (17.2), усилитель 18.1 (18.2) второй промежуточной частоты, усилитель 25.1 (25.2) суммарной частоты, третий гетеродин 26.1 (26.2), третий смеситель 27.1 (27.2), амплитудный ограничитель 19.1 (19.2), синхронный детектор 20.1 (20.2), перемножитель 21.1 (21.2), полосовой фильтр 22.1 (22.2) и фазовый детектор 23.1 (23.2) образуют приемник 14.1 (14.2).

Между диспетчерским пунктом и каждой системой жизнеобеспечения сложных объектов устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) на одной несущей частоте.

Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов работает следующим образом.

Для передачи сообщений и команд с диспетчерского пункта включается генератор 3.1 несущей частоты, который формирует высокочастотное гармоническое колебание (фиг. 5, а)

где Uc1, Wc, φс1, Tc1 - амплитуда, несущая частота, начальная фаза и длительность высокочастотного гармонического колебания, которое поступает на первый вход амплитудного модулятора 4.1. На второй вход последнего с выхода источника 1.1 аналоговых сообщений подается модулирующая функция m1(t) (фиг. 5, б), содержащая аналоговое сообщение.

На выходе амплитудного модулятора 4.1 образуется амплитудно-модулированный (AM) сигнал (фиг. 5, в).

который поступает на первый вход фазового манипулятора 5.1, на второй вход которого подается модулирующий код M1 (t) (фиг. 5, г) с выхода источника 6.1 дискретных сообщений. На выходе фазового манипулятора 5.1 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) (фиг. 5, д)

где φk1(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M1 (t), причем φk1(t)=coust при Кτэ<t<(k+1)τэ и может изменяться скачком при t=Кτэ, т.е. на границах между элементарными посылками (К-1.2, …, N1):

τэ, N1 - длительность и количество элементарных посылок, из которых составлен сигнал длительностью Тс1 (Tc1=N1⋅τэ),

который поступает на первый вход первого смесителя 9.1, на второй вход которого подается напряжение первого гетеродина 8.1

На выходе смесителя 9.1 образуются напряжения комбинационных частот/ Усилителем 10.1 выделяется напряжение первой промежуточной (суммарной) частоты

где

Wup1=Wc+Wr1 - первая промежуточная (суммарная) частота;

φпр1с1r1.

Это напряжение после усиления в усилителе 11.1 мощности через дуплексер 12.1 поступает в приемопередающую антенну 13.1, излучается ею в эфир на частоте W1, улавливается приемопередающей антенной 13.2 системы жизнеобеспечения и через дуплексер 12.2 и усилитель 15.2 мощности поступает на первый вход смесителя 17.2. На второй вход смесителя 12.2 подается напряжение Ur1 (t) гетеродина 16.2. На выходе смесителя 17.2 образуются напряжения комбинационных частот. Усилителем 25.2. выделяется напряжение первой суммарной частот:

0<t<Tc1,

где UΣ1=0.5Uпр1Ur1;

WΣ1=Wr1+W1 - первая суммарная частота;

ϕΣ1пр1r1.

которое поступает на первый вход третьего смесителя 27.2. На второй вход третьего смесителя 27.2 подается напряжение третьего гетеродина 26.2

на выходе смесителя 27.2 образуется напряжение комбинационных частот. Усилителем 18.2 выделяется напряжение второй промежуточной (разностной) частоты

где Uup2=1/2UΣ1*Ur3;

wup2=wr3-wΣ1 - вторая промежуточная (разностная) частота,

ϕuр2r3Σ1

Напряжение uup2(t) (фиг. 5, е) второй суммарной частоты с выхода усилителя 18.2 поступает на вход амплитудного ограничителя 19.2 и на первый (информационный) вход синхронного детектора 20.2. На выходе амплитудного ограничителя 19.2 образуется напряжение (фиг. 5, ж)

где Uo - порог ограничителя,

которое представляет собой ФМн сигнал и поступает на второй (опорный) вход синхронного детектора 20.2 и на первый вход перемножителя 21.2.

На выходе синхронного детектора 20.2 образуется первое низкочастотное напряжение (фиг. 5, з)

где пропорциональное модулирующей функции m1 (t) (фиг. 5, б).

Это напряжение поступает на первый вход исполнительного блока 24.2. На второй вход перемножителя 21.2 подается напряжение гетеродина 8.2

На выходе перемножителя 21.2 образуется напряжение третьей промежуточной (разностной) частоты (фиг. 5, и)

где

Wup3=Wr2-Wup2 - третья промежуточная (разностная) частота;

φпр3r2uр2,

которое представляет собой ФМн сигнал на частоте Wr1=Wup3 гетеродина 16.2.

Это напряжение выделяется полосовым фильтром 22.2 и поступает на первый (информационный) вход фазового детектора 23.2, на второй (опорный) вход которого подается напряжение ur1 (t) гетеродина 16.2. На выходе фазового детектора 23.2 образуется второе низкочастотное напряжение (фиг. 5, к)

где

пропорциональное модулирующему коду M1 (t) (фиг. 5, г). Это напряжение поступает на второй вход исполнительного блока 24.2.

Описанная выше работа супергетеродинного приемника 14.2 соответствует случаю приема полезных АМ-ФМн сигналов по основному каналу на частоте W1 (фиг. 4).

Если ложный сигнал (помеха) поступает на вход приемника 14.2 по первому зеркальному каналу на частоты wз1,

0<t<Tз1,

Где UΣ2=1/2 Uз1+Ur2;

ϕΣ2з1r1 - вторая суммарная частота;

ϕΣ2з1r1

которое не попадает в полосу пропускания усилителя 25.2 суммарный частоты. Это объясняется тем, что частота настройки ωH1 усилителя 25.2 суммарной частоты выбирается равной ωH1Σ1.

Следовательно, ложный сигнал (помеха), поступающий на вход приемника 14.2 по первому зеркальному каналу на частоте ωз1, подавляется.

По аналогической причине подавляется и ложные сигналы (помехи), принимаемые по другим дополнительным каналам.

При передаче сообщений с системы жизнеобеспечения сложных объектов с помощью генератора 3.2 несущей частоты формируется высокочастотное гармоническое колебание

которое поступает на первый вход амплитудного модулятора 4.2. На второй вход амплитудного модулятора 4.2 с выхода источника 1.2 аналоговых сообщений подается модулирующая функция m2(t), содержащая аналоговые сообщения.

На выходе амплитудного модулятора 4.2 образуется AM сигнал

которое поступает на первый вход фазового манипулятора 5.2, на второй вход которого подается модулирующий код M2(t) с выхода источника 6.2 дискретных сообщений. На выходе фазового манипулятора 5.2 формируется сложный АМ-ФМн сигнал

который поступает на первый вход смесителя 9.2, на второй вход которого подается напряжение гетеродина 8.2

На выходе смесителя 9.2 образуются напряжения комбинационных частот. Усилителем 10.2 выделяется напряжение третьей промежуточной (разностной) частоты

где

Wпр3=Wr2-Wc - третья промежуточная (разностная) частота;

φ6r2с2.

Это напряжение после усиления в усилителе 11.2 мощности через дуплексер 12.2 поступает в приемопередающую антенну 13.2, излучается ею в эфир на частоте W2, улавливается приемопередающей антенной 13.1 диспетчерского пункта и через дуплексер 12.1 и усилитель 15.1 мощности поступает на первый вход смесителя 17.1. На второй вход смесителя 17.1 подается напряжение ur2(t) гетеродина 16.1. На выходе смесителя 17.1 образуются напряжения комбинационных частот. Усилителем 25.1 выделяется напряжение третьей суммарной частоты

0<t<Tc2

Где UΣ2=1/2 U6*Ur2;

wΣ3=w2+wr2 - первая суммарная частота;

ϕΣ3r26

которое поступает на первый вход третьего смесителя 27.1. На второй вход третьего смесителя 27.1 подается напряжение третьего гетеродина 26.1

на выходе смесителя 27.1 образуется напряжение комбинационных частот. Усилителем 18.1 выделяется напряжение второй промежуточной (разностной) частоты

где Uup4=1/2 U6*Ur2;

wup4=wΣ3-wr3 - вторая промежуточная (разностная) частота,

ϕup4Σ3r3

которое поступает на первый (информационный) вход синхронного детектора 20.1 и на вход амплитудного ограничителя 19.1.

На выходе амплитудного ограничителя 19.1 образуется напряжение

где Uo - порог ограничения,

которое поступает на второй (опорный) вход синхронного детектора 20.1 и первый вход перемножителя 21.1.

На выходе синхронного детектора 20.1 образуется низкочастотное напряжение

где

пропорциональное модулирующей функции m2(t). Это напряжение поступает на первый вход блока 24.1 регистрации и анализа.

На второй вход перемножителя 2.1 подается напряжение ur1(t) гетеродина 8.1, на выходе которого образуется напряжение

где

которое представляет собой ФМн сигнал на частоте Wr2 гетеродина 16.1. Это напряжение выделяется полосовым фильтром 22.1 и поступает на первый (информационный) вход фазового детектора 23.1, на второй (опорный) вход которого подается напряжение ur2(t) гетеродина 16.1. На выходе фазового детектора 23.1 образуется низкочастотное напряжение

где

пропорциональное модулирующему коду M2(t). Это напряжение поступает на второй вход блока 24.1 регистрации и анализа.

Описанная выше работа супергетеродинного приемника 14.1 соответствует случаю приема полезных АМ-ФМн сигналов по основному каналу на частоте W2 (фиг. 2).

Если ложный сигнал (помеха) поступает на вход приемника 14.1 по первому зеркальному каналу на частоты wз2,

0<t<Tз2,

то на выходе смесителя 17.1 образуется следующее напряжение

0<t<Тз2,

где UΣ4=1/2 Uз2Ur2;

wΣ4=wз2+wr2 - вторая суммарная частота;

ϕΣ4з2r2

которое не попадает в полосу пропускания усилителя 25.1 суммарный частоты. Это объясняется тем, что частота настройки ωH2 усилителя 25.1 суммарной частоты выбирается равной ωH2Σ3.

Следовательно, ложный сигнал (помеха), поступающий на вход приемника 14.1 по первому зеркальному каналу на частоте ωз2, подавляется.

По аналогической причине подавляется и ложные сигналы (помехи), принимаемые по другим дополнительным каналам.

Сложные сигналы с комбинированной амплитудной модуляцией (АМ-ФМн) на одной несущей частоте обладают высокой энергетической и структурной скрытностью.

Энергетическая скрытность сложных АМ-ФМн сигналов обусловлена их высокой сжимаемостью во времени и по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный АМ-ФМн сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного АМ-ФМн сигнала отнюдь не мала, она просто распределена по частотно-временной области так, что в каждой точке этой области мощность сигнала меньше мощности шумов и помех.

Структурная скрытность сложных АМ-ФМн сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменений параметров, что затрудняет оптимальную или хотя бы кваиоптимальную обработку сложных АМ-ФМн сигналов априорно неизвестной структуры с целью повышения чувствительности приемника.

Сложные АМ-ФМн сигналы позволяют применять современный вид селекции - структурную селекцию. Это значит, что появляется новая возможность разделять сигналы, действующие в одной и той же полосе частот и в одни и те же промежутки времени.

Таким образом, предлагаемое устройство по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение помехоустойчивости и достоверности обмена аналоговой и дискрийной информации между диспетчерским пунктом и системами жизнеобеспечения сложных объектов. Это достигается за счет подавления ложных сигналов (помех), принимаемых по зеркальным и комбинационным каналам, методом двойного преобразования несущей частоты принимаемого сигнала.

Причем при первом преобразовании несущей частоты принимаемого сигнала преобразуется "вверх", т.е. используется суммарная частота принимаемого сигнала и частоты второго гетеродина, а при втором преобразовании полученная суммарная частота преобразуется "вниз", т.е. используется вторая промежуточная (разностная) частота.

Метод двойного преобразования несущей частоты принимаемого сигнала отличается высокой эффективностью и простотой технической реализации.

Устройство дистанционного мониторинга систем жизнеобеспечения сложных объектов, содержащее диспетчерский пункт и системы жизнеобеспечения сложных объектов, при этом диспетчерский пункт и каждая система жизнеобеспечения сложных объектов содержат последовательно включенные источник аналоговых сообщений, амплитудный модулятор, второй вход которого соединен с выходом генератора несущей частоты, фазовый манипулятор, второй вход которого соединен с выходом источника дискретных сообщений, первый смеситель, второй вход которого соединен с выходом первого гетеродина, усилитель первой промежуточной частоты, первый усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, второй усилитель мощности и второй смеситель, второй вход которого соединен с выходом второго гетеродина, последовательно включенные усилитель второй промежуточной частоты и амплитудный ограничитель, синхронный детектор и блок регистрации и анализа, последовательно подключенные к выходу амплитудного ограничителя перемножителя, второй вход которого соединен с выходом второго гетеродина, а выход подключен ко второму входу блока регистрации и анализа, между диспетчерским пунктом и каждой системой жизнеобеспечения сложных объектов устанавливается дуплексная радиосвязь с использованием сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте, при этом на диспетчерском пункте эти сигналы излучаются на частоте

W1=Wпр1=Wr2,

где Wпр1 - первая промежуточная частота,

Wr2 - частота второго гетеродина,

а принимаются на частоте W2=Wпр3=Wr1,

где Wпр3 - третья промежуточная частота,

Wr1 - частота первого гетеродина,

а на каждой системе жизнеобеспечения сложных объектов, наоборот, сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией на одной несущей частоте излучаются на частоте W2, а принимаются на частоте W1, частоты Wr1 и Wr2 гетеродинов разнесены на значение второй промежуточной частоты

Wr2-Wr1=Wпр2,

на каждой системе жизнеобеспечения сложных объектов блок регистрации и анализа выполнен в виде исполнительного блока, отличающееся тем, что диспетчерский пункт и каждая система жизнеобеспечения сложных объектов снабжены усилителем суммарной частоты, третьим гетеродином и третьим смесителем, причем к выходу второго смесителя последовательно подключены усилитель суммарной частоты и третий смеситель, второй вход которого соединен с выходом третьего гетеродина, а выход подключен к выходу усилителя второй промежуточной частоты.



 

Похожие патенты:

Изобретение относится к технологии беспроводной связи, в частности для измерения характеристик лучей. Технический результат заключается в более эффективном конфигурировании оконечного устройства в соответствии с результатом измерений.

Изобретение относится к технике беспроводной связи и предназначено для использования в многолучевой системе. Технический результат заключается в том, что бы обеспечить сетевому устройству возможность учить информацию приемного луча, согласованного с передающим лучом нисходящей линии связи, и далее выбирать подходящий передающий луч.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении качества связи за счет улучшения характеристики устройства сетевой стороны при приеме сигнала восходящего канала.

Изобретение относится к технике беспроводной связи и раскрывает различные аспекты, относящиеся к методам для гармонизации между режимами передачи (ТМ), основанными на общем опорном сигнале (CRS) и опорном сигнале демодуляции (DM-RS) в нелицензированном спектре.

Изобретение относится к средствам борьбы с минами и другими взрывоопасными предметами, имеющими радиовзрыватели, и предназначено для защиты от радиоуправляемых взрывных устройств.

Изобретения относятся к области связи и предназначены для измерения параметров луча. Технический результат заключается в уменьшении нагрузки на сетевое устройство.

Изобретение относится к сквозному формированию луча в системе беспроводной связи с использованием кластеров узлов доступа, которые отличаются от зоны покрытия пользователя.

Изобретение относится к технике беспроводной связи. Технический результат заключается в том, что операция передачи данных UL на основе кодовой книги может эффективно поддерживаться в новой системе беспроводной связи.

Изобретение относится к передаче восходящего сигнала. Технический результат - снижение ресурсопотребления при передаче сигналов.

Изобретение относится к беспроводным сетям и, в частности, к конфигурации получения качества соты. Технический результат заключается в оптимизации конфигурирования параметр N (то есть количество хороших лучей), которые должны использоваться для выполнения получения качества соты.

Изобретение относится к технологии беспроводной связи, в частности для измерения характеристик лучей. Технический результат заключается в более эффективном конфигурировании оконечного устройства в соответствии с результатом измерений.
Наверх