Способ каталитического гидрооблагораживания остатка газового конденсата

Изобретение относится к нефтегазоперерабатывающей промышленности. Описан способ каталитического гидрооблагораживания остатков газовых конденсатов и легких нефтей с низким содержанием металлов, смол и асфальтенов на стационарных слоях катализаторов, включающий стадии гидрогенизационного обессеривания, стабилизации гидрогенизата, возвращения части продукта процесса на смешение с сырьем и смешения полученной после стабилизации легкой фракции с гидрогенизатом, в котором стадию гидрообессеривания осуществляют в реакторе на двух стационарных слоях катализаторов, при этом в первом слое по ходу сырья используют алюмоникельмолибденовый катализатор с удельной поверхностью не ниже 50 м2/г, с долей пор радиусом 10-15 нм не менее 60 % от общего объема пор, с долей свободного объема слоя катализатора не менее 50 %; во втором слое по ходу сырья используют алюмокобальтмолибденовый катализатор с удельной поверхностью не ниже 250 м2/г, с долей пор радиусом 5-9 нм не менее 65% от общего объема пор, с долей свободного объема слоя катализатора не менее 30 %, при соотношении слоев соответственно (60÷80) : (20÷40) % объема; при этом на смешение с сырьем направляют 20-45 % масс. гидрогенизата, а основное количество стабильного гидрогенизата смешивают с полученной после стабилизации легкой углеводородной фракцией и выводят полученную смесь как судовое топливо. Технический результат - получение судового топлива с содержанием серы менее 0,5 % масс. 2 з.п. ф-лы, 1 ил., 2 табл., 27 пр.

 

Изобретение относится к нефтегазоперерабатывающей промышленности, конкретно к способу каталитического гидрооблагораживания остатков атмосферной перегонки газовых конденсатов и легких нефтей с низким содержанием металлов, смол и асфальтенов с получением судового топлива.

Известен способ гидроконверсии остатка атмосферной дистилляции газового конденсата, согласно которому перед гидроконверсией сырье смешивают с суспензией ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1 % масс. (в пересчете на молибден), предварительно приготовленной путем диспергирования каталитически активного соединения молибдена, в остатке атмосферной дистилляции гидрогенизата, с получением гомогенной устойчивой суспензии ультрадисперсного катализатора в сырье, содержащую 0,05-0,2 % масс. катализатора (в пересчете на молибден) на массу сырья, проводят гидроконверсию приготовленной смеси путем смешения с водородом и гидрогенизации сырья в реакторе с восходящим потоком сырья при температуре 380-450 °С и давлении 7-10 МПа. Сепарируют продукты гидроконверсии с получением водородсодержащего газа, который возвращают на гидрогенизацию в качестве водорода, дистиллятных фракций с температурой кипения до 350 °С, которые выводят как товарные продукты, и остатка атмосферной дистилляции гидрогенизата с температурой кипения выше 350°С (Патент РФ № 2674160, C10G 49/04, C10G 47/06).

Недостаток данного способа заключается в сложности стадии приготовления суспензии ультрадисперсного Мо-содержащего катализатора и его регенерации, а также в необходимости дополнительного гидрооблагораживания полученных светлых дистиллятов.

Известен способ гидрокрекинга углеводородного сырья, который включает в себя гидродеметаллизацию по меньшей мере в 2 реакционных зонах периодического действия, содержащих катализатор гидродеметаллизации и возможно катализатор гидродеазотирования, затем гидроочистку для понижения содержания органического азота и серы с последующими гидрокрекингом в неподвижном слое и стадией перегонки. В способе по настоящему изобретению может применяться тяжелое углеводородное сырье, содержащее по меньшей мере 0,02 - 2 % масс. асфальтенов и/или более 10 ppm металлов (главным образом никеля и ванадия). Рабочие условия для осуществления всех стадий находятся в диапазонах: температура от 360 до 450 °С, общее давление от 50 до 300 бар и отношение водорода к углеводородам от 300 до 3000 нм33
(Патент FR 2940313, C10G 45/08, C10G 65/12).

Недостатком способа является сложность и многостадийность процесса, а также жесткие условия ведения гидрокрекинга, что обуславливает увеличение капитальных и эксплуатационных затрат.

Известен способ некаталитического гидровисбрекинга газоконденсатного мазута с получением гидрогенизата, который подвергают сепарации с получением в виде жидкой фазы остатка гидровисбрекинга, а в виде паровой фазы - смеси водородсодержащего газа и фракции, выкипающей ниже 450 °С, которую затем непосредственно направляют на каталитическое гидрообессеривание. Гидрообессеривание проводят последовательно на двух слоях низкоактивных катализаторов, при этом в первом слое по ходу сырья используют катализатор в виде колец Рашига, содержащий оксиды никеля и кобальта суммарно в количестве
0,8-1,5 % масс., оксид молибдена 3,5-4,5 % масс., оксид алюминия остальное, во втором слое - катализатор в форме экструдатов, содержащий оксид никеля 1,5-2,5 % масс., оксид молибдена 6-7 % масс., оксид алюминия остальное, причем объемное соотношение первого и второго слоев катализаторов составляет от 1,0:0,6 до 1,0:1,2. Катализат гидрообессеривания отделяют от водородсодержащего и углеводородных газов, направляют на стабилизацию совместно с остатком гидровисбрекинга, получают фракцию, выкипающую ниже 350 °С, и стабилизированную фракцию, выкипающую выше 350 °С и используемой в качестве малосернистого котельного или судового топлива (Патент РФ № 2441056, C10G 45/04, C10G 65/04).

Недостатком вышеуказанного способа является сложность технологической схемы в части большого числа стадий процесса (некаталитический гидровисбрекинг, сепарация, ректификация, гидрообессеривание, сепарация, смешение, стабилизация).

Наиболее близким к заявляемому изобретению является способ гидрогенизационного облагораживания остаточного нефтяного сырья на стационарных слоях катализаторов, включающий стадии: гидродеметаллизации нефтяного сырья, последующего гидрогенизационного обессеривания и ректификации полученного гидрогенизата с выделением дистиллятных фракций и остатка, возвращение части выделенной газойлевой дистиллятной фракции на смешение с сырьем. Стадию гидродеметаллизации осуществляют в двух параллельно расположенных попеременно работающих форреакторах, загруженных каталитической системой, представляющей собой слои, расположенные в последовательности, начиная от распределительного устройства форреактора: 1-й слой - инертный керамический материал с долей свободного объема не менее 55 %, 2-й слой -алюмоникельмолибденовый катализатор с удельной поверхностью не ниже 100 м2/г, содержащий не менее 60 % общего пористого объема поры диметром 17-25 нм и более 5 % общего пористого объема поры диаметром более 50 нм, 3-й слой - алюмоникельмолибденовый катализатор с удельной поверхностью не ниже 150 м2/г, содержащий не менее 40 % общего пористого объема поры диаметром 10-17 нм, при соотношении слоев соответственно 20:(30÷35):(45÷50) % объема, при продолжительности цикла работы каждого форреактора от 3000 до 4000 часов; далее дополнительно осуществляют стадию гидродеазотирования в реакторе, загруженном алюмоникельмолибденвольфрамовым катализатором, модифицированным фосфором, с удельной поверхностью не ниже 200 м2/г, содержащим не менее 40 % общего пористого объема поры диаметром 5-10 нм; последующую стадию гидрогенизационного обессеривания осуществляют в реакторе, загруженном алюмокобальтмолибденвольфрамовым катализатором, модифицированным фосфором, с удельной поверхностью не ниже 250 м2/г, содержащим не менее 60 % общего пористого объема поры диаметром 3-8 нм; при этом на смешение с сырьем направляют 50-80 % масс. полученной после ректификации газойлевой дистиллятной фракции, оставшуюся часть газойлевой дистиллятной фракции выводят как компонент дизельного топлива или направляют на смешение с остатком ректификации, а остаток ректификации или остаток ректификации в смеси с оставшейся частью газойлевой дистиллятной фракции выделяют как остаточное судовое топливо с содержанием серы не более 0,5 % масс. Процессы гидрогенизационного облагораживания осуществляют при давлении 10-20 МПа, температуре 350-420°С, объемной скорости подачи сырья 0,3-1,5 ч-1 и соотношении водородсодержащий газ/сырье 500-2000 нм33 (Патент РФ № 2699226,
C10G 65/04, C10G 45/38).

Недостатком данного способа является сложность аппаратурно-технологического оформления, многостадийность процесса, высокие значения рабочих параметров процесса. Применение данного способа возможно для НПЗ с высокой производительностью (более 1,5 млн т/г по сырью – остаткам перегонки), но не обеспечит высокую рентабельность для малотоннажных производств.

В отличие от традиционных видов сырья (средних и тяжелых нефтей, природного битума и др.) газоконденсатные остатки, а также остатки легких нефтей характеризуется низким содержанием смол, асфальтенов, металлорганических соединений, отлагающихся на катализаторах гидропроцессов и снижающих их активность, что позволяет проводить прямое каталитическое гидрооблагораживание с использованием стационарных слоев катализаторов без применения дополнительных (защитных) реакторов для деметаллизации и деасфальтизации сырья или сложных каталитических систем (диспергированные в сырье катализаторы, кипящие и движущиеся слои катализаторов и т.д.).

Задачей заявляемого изобретения является разработка способа прямого каталитического гидрооблагораживания остатков газовых конденсатов и легких нефтей с высоким содержанием сернистых соединений, обеспечивающего получения судового топлива с содержанием серы менее 0,5 % масс.

Для решения поставленной задачи предлагается способ каталитического гидрооблагораживания остатков газовых конденсатов и легких нефтей, включающий стадии: гидрообессеривания в реакторе со стационарным слоем катализатора, стабилизации продуктов процесса, возвращения части гидрогенизата на смешение с сырьем и смешения основного количества гидрогенизата с легкой фракцией, полученной после стабилизации.

Способ отличается тем, что сырьё подвергают гидрогенизационному обессериванию в реакторе на двух стационарных слоях катализаторов с разной пористой структурой, при этом в первом слое по ходу сырья используют алюмоникельмолибденовый катализатор с удельной поверхностью не ниже 50 м2/г, с долей пор радиусом 10-15 нм не менее 60 % от общего объема пор, с долей свободного объема слоя катализатора не менее 50 %; во втором слое по ходу сырья используют алюмокобальтмолибденовый катализатор с удельной поверхностью не ниже 250 м2/г, с долей пор радиусом 5-9 нм не менее 65 % от общего объема пор, с долей свободного объема слоя катализатора не менее 30 %, при соотношении слоев соответственно (60÷80) : (20÷40) % объема; при этом 20-45 % масс. гидрогенизата возвращают на смешение с исходным сырьем, а основное количество целевого продукта смешивают с легкой углеводородной фракцией процесса и выводят как судовое топливо с содержанием серы менее 0,5 % масс. При этом цикл работы реактора составляет не менее 12000 часов.

В качестве сырья используют остатки атмосферной перегонки газовых конденсатов и нефтей с содержанием серы не более 3,5 % масс., смол – не более 20,0 % масс., тяжелых металлов (никеля и ванадия) – не более 30 мг/кг.

Процесс гидрообессеривания осуществляют при температуре
340-360 °С, давлении 4,0-6,0 МПа, объемной скорости подачи сырья (исходное сырьё + часть гидрогенизата) в реактор – 1,0-2,0 ч-1, соотношении водород/сырье 200-500 нм33.

Предлагаемый способ обеспечивает обессеривание остатков газовых конденсатов и легких нефтей с получением судового топлива с содержанием серы менее 0,5 % масс. без применения стадий деметаллизации и деасфальтизации сырья, что улучшает технико-экономические показатели процесса.

Предлагаемый способ осуществляют следующим образом (Фиг. 1).

Остаток атмосферной перегонки газового конденсата или легкой нефти (поток 1) направляется в реакторный блок гидрообессеривания, предварительно смешиваясь с водородсодержащим газом (поток 2). Нагретая газожидкостная смесь (поток 3) поступает в реактор, в котором нисходящим потоком проходит через слои предварительно загруженных катализаторов и в котором при определенной температуре и давлении протекают реакции гидрогенизации. Выходящая из реактора продуктовая смесь сепарируется на газ (поток 4), который поступает на очистку, и жидкость, после чего жидкая часть направляется на стабилизацию, где происходит отделение легких фракций (поток 5) и возвращение части гидрогенизата на смешение с сырьем. Далее стабильный гидрогенизат (поток 6), в который добавляются легкие фракции, направляется в резервуарный парк на хранение, как товарный продукт (судовое топливо).

Изобретение иллюстрируется нижеследующим примером на лабораторной проточной установке.

Пример. Исходное сырье – газоконденсатный мазут со следующими свойствами: плотность при 15 °С - 923,7 кг/м3 , кинематическая вязкость при 50 °С составляет 16 мм2/сек, температура начала кипения 250,7 °С, содержание фракций выкипающих ниже 350 °С составляет 21 % об., содержание общей серы – 2,87 % масс., температура застывания 31 °С.

Сырье подается на смешение с техническим водородом, далее газосырьевая смесь поступает в реактор, в который загружены 2 слоя катализаторов алюмоникельмолибденового и алюмокобальтмолибденового типа.

Первый слой катализатора содержит 1,5-2,5 % масс. – оксида никеля, 6,0-7,0 % масс. – оксида молибдена, оксида алюминия – остальное и характеризуется удельной поверхностью не ниже 50 м2/г, с долей пор радиусом 10-15 нм не менее 60 % от общего объема пор.

Второй слой катализатора содержит 3,0-6,0 % масс. – оксида кобальта, 10,0-15,0 % масс. – оксида молибдена, оксида алюминия – остальное и характеризуется удельной поверхностью не ниже 250 м2/г, с долей пор радиусом 5-9 нм не менее 65 % от общего объема пор.

Соотношение катализаторов первого слоя к катализаторам второго слоя составляет: 60:40 % об.

Выходящая из реактора газопродуктовая смесь направляется на стабилизацию, где происходит её разделение на жидкую (гидрогенизат) и газовую фазу. Далее одна часть (30 % масс.) гидрогенизата направляется в емкость рецикла и далее на смешение с исходным сырьём, а другая выводится с установки попутно смешиваясь с легкой углеводородной фракцией, полученной после стабилизации.

Технологические условия ведения процесса гидрообессеривания (таблица 1) варьировались в следующих диапазонах: температура 340-360 °С с шагом в 10 °С, давление 4,0-6,0 МПа с шагом 0,5 МПа, объемная скорость подачи сырья в реактор – 1,0-2,0 ч-1 с шагом 0,5 ч-1. Результаты гидрогенизационного облагораживания остатка газового конденсата при указанных режимных параметрах процесса приведены в таблице 2.

Как видно из приведенных данных, выход целевого продукта, удовлетворяющего требованиям к судовым топливам по ISO 8217 (содержание серы менее 0,5 % масс.) достигается в наиболее жестких по давлению и температуре опытах № 8, 9, 18 . При этом в опыте № 18 достигается наибольшая скорость получения целевого продукта.

Таблица 1. Технологические условия ведения процесса

Объёмная скорость подачи сырья, ч-1 1
Температура, °С 340 350 360
Давление, МПа 4 5 6 4 5 6 4 5 6
№ Опыта 1 2 3 4 5 6 7 8 9
 
Объёмная скорость подачи сырья, ч-1 1,5
Температура, °С 340 350 360
Давление, МПа 4 5 6 4 5 6 4 5 6
№ Опыта 10 11 12 13 14 15 16 17 18
 
Объёмная скорость подачи сырья, ч-1 2
Температура, °С 340 350 360
Давление, МПа 4 5 6 4 5 6 4 5 6
№ Опыта 19 20 21 22 23 24 25 26 27

Примечание - соотношение водород / сырье составляло 200 нм33.

Таблица 2. Результаты каталитического гидрооблагораживания остатка атмосферной перегонки газового конденсата

№ Опыта 1 2 3 4 5 6 7 8 9
Содержание серы, % масс. 1,06 0,74 0,49 0,92 0,60 0,38 0,78 0,49 0,29
Плотность при 15 °С, кг/м3 900,1 896,7 894,1 898,6 895,3 892,9 897,2 894,1 892,0
Кинематическая вязкость при 50 °С, мм2 15,3 11,8 10,9 13,3 11,3 10,4 12,0 10,9 9,9
Конверсия фр. > 350 °C, % 9,8 11,1 11,5 12,3 13,9 11,6 14,1 9,1 11,4
 
№ Опыта 10 11 12 13 14 15 16 17 18
Содержание серы, % масс. 1,25 0,92 0,66 1,11 0,78 0,53 0,97 0,65 0,42
Плотность при 15 °С, кг/м3 902,0 898,6 895,8 900,5 897,1 894,5 899,1 895,7 893,3
Кинематическая вязкость при 50 °С, мм2 20,2 17,4 15,5 19,5 15,9 15,1 18,8 15,5 14,6
Конверсия фр. > 350 °C, % 8,8 6,2 11,4 6,1 12,1 9,5 10,4 9,8 11,2
 
№ Опыта 19 20 21 22 23 24 25 26 27
Содержание серы, % масс. 1,48 1,15 0,88 1,33 1,01 0,74 1,19 0,87 0,75
Плотность при 15 °С, кг/м3 904,3 900,9 898,1 902,8 899,4 896,7 901,4 898,0 895,4
Кинематическая вязкость при 50 °С, мм2 20,1 18,7 15,5 19,6 18,0 14,8 18,9 15,4 14,3
Конверсия фр. > 350 °C, % 6,4 10,0 10,2 12,0 11,6 8,4 8,2 6,7 10,3

1. Способ каталитического гидрооблагораживания остатков газовых конденсатов и легких нефтей с низким содержанием металлов, смол и асфальтенов на стационарных слоях катализаторов, включающий стадии гидрогенизационного обессеривания, стабилизации гидрогенизата, возвращения части продукта процесса на смешение с сырьем и смешения полученной после стабилизации легкой фракции с гидрогенизатом, отличающийся тем, что стадию гидрообессеривания осуществляют в реакторе на двух стационарных слоях катализаторов с разной пористой структурой, при этом в первом слое по ходу сырья используют алюмоникельмолибденовый катализатор с удельной поверхностью не ниже 50 м2/г, с долей пор радиусом 10-15 нм не менее 60 % от общего объема пор, с долей свободного объема слоя катализатора не менее 50 %; во втором слое по ходу сырья используют алюмокобальтмолибденовый катализатор с удельной поверхностью не ниже 250 м2/г, с долей пор радиусом 5-9 нм не менее 65% от общего объема пор, с долей свободного объема слоя катализатора не менее 30 %, при соотношении слоев соответственно (60÷80) : (20÷40) % объема; при этом на смешение с сырьем направляют 20-45 % масс. гидрогенизата, а основное количество стабильного гидрогенизата смешивают с полученной после стабилизации легкой углеводородной фракцией и выводят полученную смесь, как судовое топливо с содержанием серы менее 0,5 % масс.

2. Способ по п. 1, отличающийся тем, что в качестве сырья используют остатки атмосферной перегонки газовых конденсатов и нефтей с содержанием серы не более 3,5 % масс., смол - не более 20,0 % масс., тяжелых металлов (никеля и ванадия) - не более 30 мг/кг.

3. Способ по п. 1, отличающийся тем, что процесс гидрогенизационного обессеривания осуществляют при давлении 4-6 МПа, температуре 340-360°С, объемной скорости подачи сырья 1,0-2,0 ч-1 и соотношении водород /сырье 200-500 нм33.



 

Похожие патенты:

Изобретение относится к способу регенерации отработанного катализатора способа дегидрирования. Способ включает в себя: a.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к катализаторам гидрооблагораживания нефтяных фракций, а именно, к катализаторам защитного слоя для гидрирования диолефинов и к способам их приготовления.

Изобретение относится к массивному катализатору совместной гидроочистки смеси растительного и нефтяного углеводородного сырья и способу его приготовления. Данный катализатор включает в свой состав молибден в количестве 55-65,0% мас., серу в количестве 30-45% мас.

Изобретение относится к способам приготовления катализатора для процесса гидроочистки прямогонной дизельной фракции. Способ приготовления катализатора NiMo/Аl2О3 для процесса гидроочистки прямогонной дизельной фракции содержит активный компонент, в состав которого входят окислы никеля, молибдена и фосфора, диспергированные на алюмооксидном носителе, способ заключается в пропитке гранул алюмооксидного носителя раствором для пропитки с последующей сушкой, раствор для пропитки готовят последовательным растворением ортофосфорной кислоты, оксида молибдена (VI), гидроксида и/или оксида никеля и диэтиленгликоля в дистиллированной воде.
Настоящее изобретение относится к катализатору защитного слоя для переработки тяжелого нефтяного сырья. Катализатор представляет собой смесь γ- и δ-модификаций оксида алюминия, которая содержит макропоры, образующие пространственную структуру.

Предложен катализатор гидроочистки дизельного топлива, включающий в свой состав соединения кобальта, молибдена, фосфора и носитель. Катализатор содержит, мас.

Изобретение относится к способу гидрооблагораживания предварительно обработанных триглицеридов жирных кислот (ТЖК) и прямогонной дизельной фракции при повышенной температуре и давлении водорода на сульфидных катализаторах MoS2/Al2O3 и NiMoS2/Al2O3 в две стадии, на первой из которых проводят гидроочистку прямогонной дизельной фракции в присутствии сульфидного NiMoS2/Al2O3 катализатора.

Предложен способ ограничения саморазогрева активированных катализаторов обработки углеводородов в виде частиц, согласно которому частицы катализатора приводят в движение в потоке проходящего через них горячего газа, при этом жидкую композицию, содержащую один или несколько пленкообразующих полимеров, распыляют на движущиеся частицы до получения на поверхности указанных частиц защитного слоя, содержащего указанный пленкообразующий полимер, средняя толщина которого составляет от 0,1 до 20 мкм.

Изобретение относится к способу гидрогенизационной переработки углеводородного сырья и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа гидрогенизационной переработки углеводородного сырья, при котором сырье пропускают через реактор с неподвижным слоем пакета катализаторов, состоящим из основного катализатора гидропереработки, в качестве которого используют алюмоникельмолибденовый и/или алюмокобальтмолибденовый катализатор в сульфидной форме, и расположенных над ним защитных слоев в количестве 10-15% реакционного объема, включающих: слой А - инертный материал для удаления механических примесей, обладающий свободным объемом не менее 65%, слой Б - композиционный фильтрующий материл для удаления твердых механических примесей и гидрирования непредельных соединений на основе высокопористого ячеистого материала, обладающий свободным объемом не менее 80%, размером отверстий не более 30 меш, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 3% масс., молибдена - не более 10% масс., слой В - сорбционно-каталитический материал для удаления мышьяка и кремния на основе мезопористого оксида кремния, обладающий удельной поверхностью не ниже 350 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения никеля и молибдена, при этом содержание никеля составляет не более 6% масс., молибдена - не более 14% масс., слой Г - катализатор деметаллизации на основе гамма-оксида алюминия, обладающий удельной поверхностью не ниже 150 м2/г, объемом пор не ниже 0,4 см3/г, в качестве активных компонентов содержащий соединения кобальта, никеля и молибдена, при этом содержание кобальта составляет не более 4% масс., никеля - не более 4% масс., молибдена - не более 14% масс., при следующем соотношении защитных слоев в частях по объему - А:Б:В:Г - 0,2:0,6÷2,4:1,2÷1,6:0,2÷1,6.

Изобретение относится к катализатору селективного гидрообессеривания высокосернистого олефинсодержащего углеводородного сырья и способу его получения. Катализатор содержит как минимум один из следующих гетерополианионов [SiW12O40]4-, [SiW11O39]8-, [SiW9O34]10-, [PW12O40]3-, [PW11O39]7-, [PW9O34]9-, [Ni(OH)6W6O18]4-, [Fe(OH)6W6O18]3- и комплексонат Ni и Fe, содержащий не менее двух карбоксильных групп и 2-10 атомов углерода, нанесенных на пористый носитель с содержанием углерода 0-10 мас.

Настоящее изобретение относится к применению фармацевтической композиции, включающей наночастицы оксида меди (II) (CuO) и N-ацетилцистеин в эффективном количестве, для индукции гибели клеток хронического миелоидного лейкоза.
Наверх