Стартовый твердотопливный ускоритель ракеты-носителя и способ его сборки

Предлагаемое изобретение относится к области ракетостроения, а именно к стартовым твердотопливным ускорителям ракеты-носителя. Стартовый твердотопливный ускоритель состоит из секций канальных зарядов с корпусами типа кокон и поворотного сопла. Особенностью конструкции является то, что секции зарядов с корпусами телескопически размещены в пенале, подвижное соединение при удлинении корпусов зарядов в пенале выполнено в виде опорно-ведущих поясов, верхняя юбка корпуса нижней секции заряда жестко скреплена с металлическим кольцом пенала, а юбки остальных секций зарядов фиксируются к соответствующим кольцам регулируемыми винтами, ось поворотного сопла отклонена от оси ускорителя и проходит через центр масс ракеты-носителя, к нижнему торцу пенала пристыкован хвостовой отсек, к верхнему торцу пенала пристыкован головной обтекатель, в полостях хвостового отсека и головного обтекателя расположены двигатели увода ускорителя от ракеты-носителя и пусковой двигатель для воспламенения зарядов твердого топлива. Конструкция ускорителя предопределяет особый подход к ее сборке. Способ сборки предлагаемого стартового твердотопливного ускорителя основан на стыковке между собой секций канальных зарядов с корпусами с элементами пенала, которая осуществляется в подвешенном на траверсе состоянии, и стыковке сопла к фланцу задней части корпуса нижней секции в определенной последовательности, стыковке головного обтекателя. Предлагаемая конструкция стартового твердотопливного ускорителя ракеты-носителя обеспечивает повышение баллистической эффективности и надежности его работы. 2 н.п. ф-лы, 10 ил.

 

Предлагаемое изобретение относится к области ракетостроения, а именно, к стартовым твердотопливным ускорителям ракеты-носителя, направлено на совершенствование конструкции и обеспечение способа ее сборки, а также повышения надежности работы.

Известны боковые твердотопливные ускорители ракеты-носителя «Титан-III С», представляющие собой твердотопливные двигатели, состоящие из пяти секций зарядов с корпусами, выполненными из стали, секции заряда с корпусом и соплом, а также переднего днища («Ракеты-носители», В.А. Александров, В.В. Владимиров / Воениздат, 1981 г., стр. 27-31).

Применение многосекционного заряда с корпусом позволяет исключить проблемы, связанные с изготовлением и транспортировкой монолитного заряда в целом массой более 100 т к месту старта.

Известны также твердотопливные ускорители в составе ступени ракеты-носителя по патенту РФ №2386571, состоящие из секций скрепленных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала, соединенных между собой с помощью газоводов. Способ сборки такой конструкции заключается в стыковке секций зарядов через газоходы и установке на нижнюю секцию сопла ускорителя. Недостатком такой конструкции является низкая надежность из-за практической сложности обеспечения ее прочности при приемлемых массовых параметрах. Особенно это проявляется при соединении в секции через газоходы более двух секций зарядов. Создание ракеты-носителя сверхтяжелого класса требует соединения 6-7 секций зарядов массой каждой около 100 т. Усилие от массы всех секций зарядов и силы тяги ускорителя должно восприниматься эллиптическим днищем «кокона» нижней секции заряда. Поперечные перегрузки при полете ракеты-носителя воспринимаются элементами газоводов и эллиптическими днищами «коконов», что также требует существенного увеличения массы и снижает надежность работы стыков указанных элементов.

Целью предлагаемого изобретения является создание твердотопливного ускорителя ракеты-носителя и способа его сборки, что обеспечивает повышение надежности его работы и баллистической эффективности.

Указанная цель достигается предлагаемой конструкцией стартового твердотопливного ускорителя ракеты-носителя, состоящего из секций канальных зарядов с корпусами и с поворотным соплом, монтированном на нижней секции, выполненными в виде «коконов» из высокопрочного композиционного материала с выступающими юбками на цилиндрических частях и полюсными отверстиями, состыкованных между собой с помощью фланцевых соединений газоводов, образующих с полюсными отверстиями «коконов» центральный канал.

Отличительной особенностью конструкции является то, что секции зарядов с корпусами телескопически размещены в едином пенале, выполненном из композиционного материала и состоящем из отдельных цилиндрических частей, соответствующих каждой секции зарядов, и жестко скрепленных между собой с помощью, например, штифто-болтового соединения;

между наружными поверхностями корпусов зарядов и внутренней поверхностью пенала имеется зазор, а подвижное в осевом направлении соединение между ними выполнено в виде опорно-ведущих поясов с антифрикционным покрытием, установленных в упомянутом зазоре в канавках корпусов зарядов и контактирующих с поверхностью пенала поверхностью с антифрикционным покрытием;

между цилиндрическими частями канала установлены металлические кольца, выступающие внутрь пенала в сторону упомянутых газоводов;

причем верхняя (дальняя от соплового блока) юбка корпуса нижней секции заряда жестко скреплена с соответствующим металлическим кольцом, а юбки остальных секций зарядов фиксируются через пластины с регулируемыми винтами, свободно опирающимися на верхние (дальние от соплового блока) поверхности соответствующих металлических колец;

при этом ось поворотного сопла ускорителя отклонена от оси последнего и проходит через центр масс ракеты-носителя;

кроме этого к нижнему торцу пенала пристыкован конический хвостовой отсек с опорным силовым кольцом на его срезе;

а к верхнему торцу пенала жестко пристыкован головной обтекатель, имеющий цилиндрический участок с диаметром, равным диаметру пенала, и конический носовой участок;

к опорному силовому кольцу хвостового отсека и верхнему торцу пенала крепятся узлы с пироразъемами для стыковки твердотопливного ускорителя к ракете-носителю, а в полости хвостового отсека и головного обтекателя расположены двигатели увода ускорителя от ракеты-носителя, также в полости головного обтекателя расположен пусковой двигатель воспламенения твердотопливных зарядов ускорителя, закрепленный на переднем фланце полюсного отверстия верхней секции заряда.

Указанная цель достигается также способом сборки предлагаемого стартового твердотопливного ускорителя, основанным на стыковке между собой через газоводы и фланцы полюсных отверстий секций канальных зарядов с корпусами, выполненными в виде «коконов» с выступающими юбками на цилиндрических частях, и стыковке сопла к фланцу задней части корпуса одной из секций. Особенностями способа является то, что секции зарядов через опорно-ведущие пояса устанавливают в единый пенал, соединяют с хвостовым отсеком и головным обтекателем в следующей последовательности:

после стыковки к одной из секций заряда газохода, сопла и установки на корпус заряда опорно-ведущих поясов на переднюю юбку с внутренней стороны с помощью байонетного соединения монтируют технологическое грузоподъемное кольцо, устанавливают сборку в вертикальное положение с опорой на юбку корпуса соплом вниз на технологическую подставку;

отдельно осуществляют сборку части пенала, соответствующую вышеуказанной секции заряда, с хвостовым отсеком и устанавливаемыми в его полости двигателями увода ускорителя;

подвешивают на траверсе секцию заряда за технологическое грузоподъемное кольцо и с помощью подвижных подвесов пенала и крана-лебедки сверху надвигают часть пенала с хвостовым отсеком на подвешенный корпус секции заряда, обеспечивая скольжение по опорно-ведущим поясам;

жестко закрепляют переднюю юбку корпуса за металлическое кольцо, монтируемое на переднем торце части пенала;

первая секция заряда в сборе с пеналом и хвостовым отсеком устанавливается на стартовом столе ракеты-носителя, опираясь на торец хвостового отсека, снимается технологическое грузоподъемное кольцо;

вторая секция заряда с пристыкованным к ней сверху газоходом через динамометр и соответствующая часть пенала подвешиваются на грузоподъемном устройстве аналогично первой секции, газовод первой секции стыкуется с фланцем полюсного отверстия корпуса второй секции;

на вторую секцию заряда надвигается соответствующая часть пенала и стыкуется с первой частью пенала и ее металлическим кольцом, например, с помощью штифто-болтового соединения;

причем через пластины с регулирующими винтами производится фиксация верхней юбки корпуса второй секции заряда с металлическим кольцом второй части пенала путем упора регулирующих винтов в наружную поверхность металлического кольца, обеспечивая при этом разгрузку динамометра;

затем аналогичным образом собираются и стыкуются последующие секции зарядов;

к переднему фланцу полюсного отверстия верхней секции заряда крепится пусковой двигатель воспламенения зарядов твердого топлива ускорителя;

к торцу последней части пенала стыкуется головной обтекатель с монтируемыми внутри него двигателями увода ускорителя от ракеты-носителя;

поворотное сопло отклоняется от геометрической оси ускорителя таким образом, чтобы его ось проходила через центр масс ракеты-носителя;

далее к хвостовому отсеку и верхнему торцу пенала твердотопливного ускорителя крепятся узлы с пироразъемами, которые стыкуются с ракетой-носителем.

Предлагаемая группа изобретений иллюстрируется графическими изображениями.

На фиг. 1 показан общий вид стартового твердотопливного ускорителя ракеты-носителя.

На фиг. 2 показан узел стыка секции зарядов и пенала.

На фиг. 3 показан узел крепления нижней секции заряда.

На фиг. 4 показан узел крепления последующих секций зарядов.

На фиг. 5 показана схема установки первой секции заряда в сборе на технологической подставке.

На фиг. 6 показана схема сборки пенала и хвостового отсека.

На фиг. 7 показана схема подвески первой секции заряда с пеналом.

На фиг. 8 показана схема монтажа технологического грузоподъемного кольца.

На фиг. 9 показано байонетное соединение технологического грузоподъемного кольца с секцией заряда.

На фиг. 10 показана схема стыковки второй секции заряда с пеналом и с первой секцией.

Стартовый твердотопливный ускоритель ракеты-носителя фиг. 1 состоит из секций канальных зарядов 1 с корпусами 2, выполненными в виде «коконов» из высокопрочного композиционного материала с полюсными отверстиями 3. Секции зарядов телескопически размещены в пенале 4, выполненном из композиционного материала и состоящем из отдельных цилиндрических частей, соответствующих каждой секции заряда, и жестко скрепленных между собой. К нижней секции заряда подстыковано поворотное сопло 5. Ось поворотного сопла 5 ускорителя отклонена от оси последнего и проходит через центр масс (ц.м.) ракеты-носителя. Кроме этого к нижнему торцу пенала 4 пристыкован конический хвостовой отсек 6 с опорным силовым кольцом 7 на его срезе, а к верхнему торцу пенала жестко пристыкован головной обтекатель 10, имеющий цилиндрический участок с диаметром, равным диаметру пенала, и конический участок для уменьшения сопротивления газового потока при полете ракеты-носителя. К опорному силовому кольцу 7 (предназначенному для возможности крепления ускорителя к ракете-носителю и возможности установки ракеты-носителя в сборе на стартовом столе космодрома) хвостового отсека 6 и верхнему торцу пенала крепятся узлы 8 с пироразъемами для стыковки твердотопливного ускорителя к ракете-носителю, а в полостях хвостового отсека и обтекателя расположены двигатели увода 9 ускорителя от ракеты-носителя, а также в полости головного обтекателя расположен пусковой двигатель 11 воспламенения твердого топлива зарядов ускорителя, закрепленный еа переднем фланце полюсного отверстия верхней секции заряда.

Выносные элементы I, II, III показаны на фиг. 2, 3, 4 соответственно.

Корпуса зарядов имеют выступающие юбки 1 (фиг. 2, 3, 4) на цилиндрических частях.

Между наружными поверхностями корпусов зарядов и внутренней поверхностью пенала 4 имеется зазор 2 (фиг. 2, 3, 4), а подвижное в осевом направлении соединение между ними выполнено в виде опорно-ведущих поясов 3 (фиг. 2) с антифрикционным покрытием, установленных в зазоре 2 (фиг. 2) в канавках корпусов зарядов и контактирующих с поверхностью пенала своей поверхностью с антифрикционным покрытием.

Между цилиндрическими частями пенала 4 установлены металлические кольца 5 (фиг. 2, 3, 4), выступающие внутрь пенала в сторону газоходов 6 (фиг. 2). Причем верхняя (дальняя от сопла) юбка 1 (фиг. 3) корпуса нижней секции заряда жестко скреплена с соответствующим металлическим кольцом 5 с помощью, например, штифто-болтового соединения 3 (фиг. 3). А верхние юбки остальных секций зарядов фиксируются через пластины 6 (фиг. 4) с регулирующими винтами 7, свободно опирающимися на верхние (дальние от сопла) поверхности соответствующих металлических колец 5 (фиг. 4), конструктивно отличающихся от нижнего кольца. При этом сила веса каждой секции заряда передается на пенал, обеспечивая разгрузку днищ каждого из корпусов типа «кокон». Отдельные части пенала скреплены между собой с помощью, например, штифто-болтового соединения 6 (фиг. 3).

Работает стартовый твердотопливный ускоритель ракеты-носителя следующим образом. По стартовой команде происходит запуск пускового двигателя 11. Горячие газы продуктов его сгорания поступают в канал зарядов твердотопливного ускорителя. Происходит воспламенение указанных зарядов. Повышается давление в камерах сгорания. Происходит деформация корпусов типа «кокон» от сил внутреннего давления. В связи с тем, что нижняя секция заряда крепится жестко к пеналу за переднюю юбку, расширение ее корпуса происходит вниз в сторону сопла, и он перемещается внутри пенала, опираясь на опорно-ведущие пояса, антифрикционное покрытие которых обеспечивает уменьшение силы трения при перемещении. Корпуса остальных секций зарядов с пластинами 6 и упорами 7 (фиг. 4) отходят от колец 5 (фиг. 4), жестко скрепленных с пеналом и перемещаются из-за деформаций, вызванных внутрикамерным давлением, вверх в сторону обтекателя. При этом выступающая за верхний опорно-ведущий пояс часть передней юбки корпуса заряда перемещается в полость обтекателя, ограниченную его цилиндрической частью. Горячие газы истекают из сопла, создавая тягу. При этом ось вектора тяги проходит через центр масс ракеты-носителя, не создавая в начальное время работы до начала движения ракеты опрокидывающий момент. Это позволяет снизить нагрузки на ракету-носитель, которые могут возникнуть в случае разновременности запуска и выхода на маршевый режим нескольких твердотопливных ускорителях, монтируемых на ракете.

Такое решение позволяет уменьшить потери тяги и повысить энергетическую эффективность по сравнению, например, с решением по патенту РФ №2486114, где ось ускорителя проходит через центр масс ракеты-носителя из-за отклонения этой оси от направления полета на основном маршевом режиме полета ракеты. Поворот сопла до совпадения его оси с осью полета ракеты на основном маршевом режиме увеличивает потери тяги, связанные с несимметричным течением газа на входе в сопло.

Далее происходит отрыв ракеты-носителя от стартового стола и ее полет по заданной траектории. Управление вектором тяги осуществляется за счет поворота сопла на требуемый угол. После выработки твердого топлива ускорителя срабатывают пироразъемы и расстыковываются узлы крепления к ракете-носителю и запускаются двигатели увода. Под действием силы тяги последних отработавший ускоритель отводится в сторону от ракеты-носителя.

Стартовый твердотопливный ускоритель ракеты-носителя представляет из себя сложную конструкцию, требующую оригинального нетривиального подхода к способу ее сборки.

Способ сборки ускорителя основан на стыковке между собой через газоводы и фланцы полюсных отверстий секций канальных зарядов с корпусами, выполненными в виде коконов с выступающими «юбками» на цилиндрических частях, и стыковке сопла к фланцу задней части корпуса одной из секций.

Особенностями сборки является то, что секции зарядов через опорно-ведущие пояса устанавливают в единый пенал, который соединяют с хвостовым отсеком и головным обтекателем в следующей последовательности: после стыковки к первой секции газовода фиг. 5, сопла и установки на корпус заряда опорно-ведущих поясов на переднюю юбку фиг. 8 с внутренней стороны с помощью байонетного соединения монтируют технологическое грузоподъемное кольцо фиг. 8, 9. Устанавливают полученную сборку в вертикальное положение с опорой на юбку корпуса соплом вниз на технологическую подставку фиг. 5. Отдельно осуществляют сборку части пенала, соответствующую вышеуказанной секции заряда, с хвостовым отсеком и установленным в его полости двигателем увода ускорителя фиг. 6. Подвешивают на траверсе секцию заряда за технологическое грузоподъемное кольцо и с помощью подвижных подвесов пенала и крана-лебедки сверху надвигают часть пенала с хвостовым отсеком на корпус подвешенной секции заряда фиг. 7, обеспечивая скольжение по опорно-ведущим поясам. Жестко закрепляют переднюю юбку корпуса за металлическое кольцо фиг. 8, монтируемое на переднем торце части пенала;

первая секция заряда в сборе с пеналом устанавливается на стартовом столе ракеты-носителя, опираясь на торец хвостового отсека;

снимается технологическое грузоподъемное кольцо;

вторая секция заряда с пристыкованным к ней газоводом через динамометр и соответствующая часть пенала подвешивается на грузоподъемном устройстве аналогично первой секции, газовод первой секции заряда стыкуется с фланцем полюсного отверстия корпуса второй секции фиг. 10;

на вторую секцию заряда надвигается соответствующая часть пенала и стыкуется с первой частью пенала и ее металлическим кольцом, например, с помощью штифто-болтового соединения;

причем через пластины с регулирующими винтами производится фиксация верхней юбки корпуса второй секции заряда с металлическим кольцом второй части пенала путем упора регулирующих винтов в наружную поверхность металлического кольца;

регулирующие винты закручиваются с таким моментом, чтобы обеспечить полную разгрузку динамометра, при этом достигается передача усилия от веса секции заряда на пенал; снимается технологическое грузоподъемное кольцо;

затем аналогичным образом собираются и стыкуются последующие секции зарядов;

к переднему фланцу полюсного отверстия верхней секции заряда крепится пусковой двигатель воспламенения зарядов твердого топлива ускорителя;

к торцу последней части пенала стыкуется головной обтекатель с монтируемыми внутри него двигателями увода ускорителя от ракеты-носителя, сопла которых расположены в окнах обтекателя;

поворотное сопло устанавливается таким образом, чтобы его геометрическая ось проходила через центр масс ракеты-носителя;

далее к хвостовому отсеку и верхнему торцу пенала твердотопливного ускорителя крепятся узлы с пироразъемами, которые стыкуются с ракетой-носителем.

Предложенная конструкция твердотопливного ускорителя ракеты-носителя и способ его сборки обеспечивают надежную работу за счет применения пенала и снижения поперечных и осевых нагрузок на корпуса зарядов и их соединения при подготовке к старту и полете ракеты-носителя. Конструкция в частности позволяет увеличить внутрикамерное давление продуктов сгорания и достичь, таким образом, повышенной энергобаллистической эффективности ракеты.

1. Стартовый твердотопливный ускоритель ракеты-носителя, состоящий из секций канальных зарядов с корпусами, выполненными в виде «коконов» из высокопрочного композиционного материала, с выступающими юбками на цилиндрических частях и полюсными отверстиями, состыкованных между собой с помощью фланцевых соединений и газоводов, образующих с полюсными отверстиями «коконов» центральный канал, и поворотного сопла, монтируемого на нижней секции,

отличающийся тем, что

секции зарядов с корпусами телескопически размещены в пенале, выполненном из композиционного материала и состоящем из отдельных цилиндрических частей, соответствующих каждой секции зарядов и жестко скрепленных между собой;

между наружными поверхностями корпусов зарядов и внутренней поверхностью пенала имеется зазор, а подвижное в осевом направлении соединение между ними выполнено в виде опорно-ведущих поясов с антифрикционным покрытием, установленных в упомянутом зазоре в канавках корпусов зарядов и контактирующих с поверхностью пенала поверхностью с антифрикционным покрытием;

между цилиндрическими частями пенала установлены металлические кольца, выступающие внутрь пенала в сторону упомянутых газоводов;

причем верхняя (дальняя от сопла) юбка корпуса нижней секции заряда жестко скреплена с соответствующим металлическим кольцом, а верхние юбки остальных секций зарядов фиксируются через пластины с регулируемыми винтами, свободно опирающимися на верхние (дальние от сопла) поверхности соответствующих металлических колец;

при этом ось поворотного сопла ускорителя отклонена от оси последнего и проходит через центр масс ракеты-носителя;

кроме этого к нижнему торцу пенала пристыкован конический хвостовой отсек с опорным силовым кольцом на его срезе;

а к верхнему торцу пенала жестко пристыкован головной обтекатель, имеющий цилиндрический участок с диаметром, равным диаметру пенала, и конический носовой участок;

к опорному силовому кольцу хвостового отсека и верхнему торцу пенала крепятся узлы с пироразъемами для стыковки твердотопливного ускорителя к ракете-носителю, а в полостях хвостового отсека и головного обтекателя расположены двигатели увода ускорителя от ракеты-носителя, также в полости головного обтекателя расположен пусковой двигатель воспламенения твердотопливных зарядов ускорителя, закрепленный на переднем фланце полюсного отверстия верхней секции заряда.

2. Способ сборки стартового твердотопливного ускорителя ракеты-носителя, выполненного по п. 1, основанный на стыковке между собой через газоводы и фланцы полюсных отверстий секций канальных зарядов с корпусами, выполненными в виде «коконов» с выступающими юбками на цилиндрических частях, и стыковке сопла к фланцу задней части корпуса одной из секций,

отличающийся тем, что

секции зарядов через опорно-ведущие пояса устанавливают в единый пенал, который соединяют с хвостовым отсеком и головным обтекателем, в следующей последовательности: после стыковки к одной из секций газовода, сопла и установки на корпус заряда опорно-ведущих поясов на переднюю юбку с внутренней стороны с помощью байонетного соединения монтируют технологическое грузоподъемное кольцо, устанавливают сборку в вертикальное положение с опорой на юбку корпуса соплом вниз на технологическую подставку;

отдельно осуществляют сборку части пенала, соответствующую вышеуказанной секции заряда, с хвостовым отсеком и установленными в его полости двигателями увода ускорителя;

подвешивают на траверсе секцию заряда за технологическое грузоподъемное кольцо и с помощью подвижных подвесов пенала и крана-лебедки сверху надвигают часть пенала с хвостовым отсеком на подвешенный корпус секции заряда, обеспечивая скольжение по опорно-ведущим поясам;

жестко закрепляют переднюю юбку корпуса за металлическое кольцо, монтируемое на переднем торце части пенала;

первая секция заряда в сборе с пеналом и хвостовым отсеком устанавливается на стартовом столе ракеты-носителя, опираясь на торец хвостового отсека, снимается технологическое грузоподъемное кольцо;

вторая секция заряда с пристыкованным к ней сверху газоходом через динамометр и соответствующая часть пенала подвешиваются на грузоподъемном устройстве аналогично первой секции, газовод первой секции стыкуется с фланцем полюсного отверстия корпуса второй секции;

на вторую секцию заряда надвигается соответствующая часть пенала и стыкуется с первой частью пенала и ее металлическим кольцом, например, с помощью штифто-болтового соединения;

причем через пластины с регулирующими винтами производится фиксация верхней юбки корпуса второй секции заряда с металлическим кольцом второй части пенала путем упора регулирующих винтов в наружную поверхность металлического кольца, обеспечивая при этом разгрузку динамометра;

затем аналогичным образом собираются и стыкуются последующие секции зарядов;

к переднему фланцу полюсного отверстия верхней секции заряда крепится пусковой двигатель воспламенения зарядов твердого топлива ускорителя;

к торцу последней части пенала стыкуется головной обтекатель с монтируемыми внутри него двигателями увода ускорителя от ракеты-носителя;

поворотное сопло отклоняется от геометрической оси ускорителя таким образом, чтобы его ось проходила через центр масс ракеты-носителя;

далее к хвостовому отсеку и верхнему торцу пенала твердотопливного ускорителя крепятся узлы с пироразъемами, которые стыкуются с ракетой-носителем.



 

Похожие патенты:

Изобретение относится к ракетной технике, а более конкретно к способам комплектации жидкостных ракетных двигателей с дожиганием с управляемым вектором тяги. Cпособ комплектации жидкостного ракетного двигателя с дожиганием с управляемым вектором тяги, включающий операции сборки корпуса камеры, выполненного из цилиндрической части, сужающегося и расширяющегося участков сопла, с карданом, устанавливаемым по периферии стыка корпуса сужающегося участка сопла с расширяющимся, и далее с цапфами траверс и рамой жидкостного ракетного двигателя, при этом в нем установку кардана осуществляют перед операцией соединения корпусов сужающейся и расширяющейся части сопла, кардан раскрепляют с помощью технологических приспособлений с возможностью фиксации от продольных и поперечных перемещений его при операциях сборки корпусов сужающегося и расширяющегося участков сопла, соединяют два корпуса сужающейся и расширяющейся части сопла, например, сваркой, а установку кардана в цапфах камер и в цапфах траверс, сборку траверс с рамой осуществляют после полного цикла изготовления камеры.

Изобретение относится к ракетной технике. Жидкостный ракетный двигатель с управляемым вектором тяги, содержащий с возможностью качания вдоль главных плоскостей стабилизации сопло камеры и карданный узел с цапфами в ортогональных плоскостях между траверсами и рамой и смонтированным между карданным узлом и наружным корпусом сопла камеры в районе минимального сечения сопла разъемным бандажом с цапфами, установленным торцевыми частями на торцах кольцевых буртов корпуса сопла до минимального по потоку газов в сопле и после минимального сечения, при этом между разъемным бандажом и корпусом камеры и соосно им установлены конические втулки, ориентированные минимальными диаметрами первая - на входное, а вторая - на выходное от минимального сечение сопла, причем минимальными диаметрами, закрепленными на торцах корпуса сопла, а максимальными первая - на бандаже со стороны входной части сопла, а вторая - на бандаже со стороны выходной части сопла, причем в конусных стенках втулок выполнены сквозные радиальные пазы, образующие проушины, установленные последними в пазах втулок без взаимного соприкосновения проушин.

Изобретение относится к жидкостным ракетным двигателям. Многокамерный жидкостный ракетный двигатель с дожиганием с управляемым вектором тяги, содержащий установленные два двигательных блока, каждый с газогенератором, камерами, агрегатами автоматики и регулирования, рамой, размещенным в центральной части двигательного отсека турбонасосным агрегатом с турбиной и насосами, соединенных своими затурбинными полостями и полостями после насосов разветвленными магистралями общих патрубков и расходящихся к камерам изогнутых симметричных трубопроводов подвода соответственно генераторного газа и компонентов к соответствующим полостям смесительных головок и трактам охлаждения камер, размещенных и скрепленных с рамами посредством траверс по периферии двигательного отсека, при этом в нем каждый двигательный блок расположен крестообразно и ортогонально относительно другого своими главными соответствующими продольными плоскостями симметрии и с радиально симметричным расположением камер, причем в каждом из двигательных блоков расходящиеся к камерам симметричные изогнутые трубопроводы подвода соответственно генераторного газа и компонентов к соответствующим полостям смесительных головок и трактам охлаждения камер выполнены с одинаковыми диаметрами поперечных сечений и одинаковой траектории и ориентированы изогнутыми частями в месте соединения с общим патрубком на первом блоке по направлению к срезам сопел, а на втором - в обратную вдоль продольной оси симметрии жидкостного ракетного двигателя сторону с образованием зазора между трубопроводами первого блока, а общие патрубки одного и второго двигательного блока выполнены газодинамически идентичными, например, с одинаковыми диаметрами поперечных сечений, радиусами, углами, количеством поворотов и длинами прямолинейных и криволинейных траекторий участков между ними.

Ракетный двигатель твердого топлива с изменяемым вектором тяги по направлению состоит из силового теплоизолированного корпуса и центрального тела, образующих в выходной части контур кольцевого сопла, канального заряда твердого топлива, скрепленного с силовым теплоизолированным корпусом, воспламенительного устройства и сопловой заглушки, привода перемещения, расположенного в центральном теле.

Изобретение относится к многокамерным жидкостным ракетным двигателям с дожиганием и управляемым вектором тяги. Многокамерный жидкостный ракетный двигатель с дожиганием и управляемым вектором тяги содержит раму, газогенератор, турбонасосный агрегат с насосами, входные магистрали окислителя и горючего с входными патрубками и установленными на них пусковыми клапанами, несколько неподвижных основных камер, соединенных газоводами с полостью турбины и магистралями с полостями насосов, и сопел управления, соединенных магистралями с пуско-отсечными клапанами с затурбинной полостью турбонасосного агрегата, при этом установлен дополнительный насосный агрегат с насосами горючего и окислителя и электрическим приводом в виде электродвигателя, соединенным электрической системой с установленным аккумулятором, входы одноименных компонентов которых соединены магистралями с установленными на них пуско-отсечными клапанами с полостями входных патрубков перед пуско-отсечными клапанами.

Изобретение относится к управлению вектором тяги жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала, соединенных между собой с помощью разъемного соединения, рулевые агрегаты и раму, согласно изобретению на охлаждаемой части сопла и неохлаждаемом насадке выполнены бурты округлой формы и имеющие эквидистантные поверхности с графитовым покрытием, между которыми установлены в двух взаимно перпендикулярно-расположенных плоскостях четыре дефлектора округлой формы из углерод-углеродного композиционного материала, внутренние и наружные поверхности которых идентичны по форме поверхностям буртов с осью вращения, расположенной на оси охлаждаемой части сопла, и с торцевой поверхностью дефлектора, являющейся продолжением профилированной поверхности сопла при их нахождении в исходном положении.

Изобретение относится к ракетным двигателям, в которых для управления вектором тяги в полете используются различные органы управления, расположенные у среза сопла или внутри него.

Изобретение относится к ориентируемой системе ракетного двигателя для летательных аппаратов. Система ориентируемого ракетного двигателя для летательного аппарата, содержащая ракетный двигатель (4), содержащий камеру (7) сгорания и сопло (8), подсоединенное посредством горловины (9) сопла, при этом система выполнена с возможностью ориентировать ракетный двигатель (4) относительно исходного положения, определяющего исходную ось, которая, при нахождении ракетного двигателя (4) в исходном положении, ортогональна к отверстию (10) для выброса газов из сопла и проходит через центр (C) отверстия (10) для выброса газов, при этом система содержит средство (11) наклона, посредством которого ракетный двигатель (4) жестко подсоединен к горловине (9) сопла посредством прилегающей части сопла (8) и которое наклоняет сопло (8) и камеру (7) сгорания в противоположных направлениях так, что ракетный двигатель принимает, относительно исходного положения, наклонные положения, в которых центр (C) отверстия (10) для выброса газов из сопла (8) расположен, по меньшей мере, приблизительно на исходной оси, при этом средство (11) наклона содержит полую опорную конструкцию (14A), имеющую форму усеченной пирамиды, которая выполнена с возможностью деформации в обоих направлениях первого направления (12) деформации под действием первого приводного средства (15), на малом основании (24) которой размещен ракетный двигатель (4) и внутри которой размещена камера (7) сгорания.

Изобретение относится к управлению вектором тяги жидкостного ракетного двигателя (ЖРД). ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала (УУКМ), рулевые агрегаты и раму, наружная поверхность неохлаждаемого насадка в районе среза выполнена в виде сферы с центром вращения на оси камеры, на которую устанавливается дефлектор из УУКМ, состоящий из двух частей, соединенных между собой при помощи фланцевого соединения с уплотнением из терморасширенного графита, внутренняя поверхность которого имеет сферическую форму, эквидистантную сферической поверхности неохлаждаемого насадка, а на наружной поверхности выполнены проушены для закрепления к рулевым агрегатам, которые крепятся к раме двигателя, при этом сферические поверхности неохлаждаемого насадка и дефлектора имеют графитовое покрытие.

Изобретение относится к области ракетостроения, в частности к жидкостным ракетным двигателям с управляемым вектором тяги. Жидкостной ракетный двигатель с управляемым вектором тяги, содержащий камеру с возможностью качания в цапфах в главных плоскостях стабилизации, магистрали подвода компонентов на периферии двигателя вдоль его оси, турбонасосный агрегат с центробежными основными насосами высокого давления и подкачивающие агрегаты, выходы насосов которых выполнены в виде спиральных отводов с коническими патрубками и соединены у последних с входами основных насосов по периферии камеры двумя парами двух взаимно перпендикулярных последовательных гибких трубопроводов в виде сильфонов, параллельных главным плоскостям стабилизации и соединенных криволинейными патрубками, согласно изобретению подкачивающие центробежные насосы установлены своими входами соосно магистралям подвода компонентов, а коническими патрубками выходов вдоль продольных осей симметрии первых по направлению к насосам высокого давления и ближайшим сильфонам гибких трубопроводов, причем подкачивающий насос одного компонента выполнен с возможностью вращения ротора в противоположном направлении от направления вращения ротора подкачивающего насоса другого компонента.

Изобретение относится к области ракетной техники, а именно к многорежимным твердотопливным ракетным двигателям, и может быть использовано при создании ракет. Многорежимный ракетный двигатель твердого топлива содержит цилиндрический корпус, промежуточное днище, разделяющее его на стартовую и маршевую камеры сгорания, заряды твердого топлива, воспламенительные устройства и выходное сопло.
Наверх