Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)



Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)
Способ получения углеродсодержащего адсорбента для удаления ароматических соединений (варианты)

Владельцы патента RU 2724252:

Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) (RU)

Варианты изобретения относятся к способу получения углеродсодержащего адсорбента на основе углеродных остатков риформинга лигнина. Адсорбент предложен для адсорбции ароматических соединений из сточных вод. Углеродсодержащий адсорбент получают из остатка углекислотного риформинга лигнина в синтез-газ, получаемый при микроволновом излучении в присутствии железосодержащих катализаторов, путем дополнительной обработки микроволновым излучением с частотой 2,40-2,50 ГГц и плотностью тока 100-150 мА в течение 20-40 мин в среде СО2 при индуцируемой излучением температуре 950-1000°С. По другому варианту полученный пористый углеродный адсорбент дополнительно обрабатывают водным раствором гидроксида аммония и затем подвергают термоудару в муфельной печи при 400°С в среде Ar в течение 30 мин. Технический результат - повышение удельной поверхности адсборбента и его адсорбционной способности по отношению к ароматическим соединениям. 2 н. и 2 з.п. ф-лы, 3 ил., 3 табл., 6 пр.

 

Настоящее изобретение относится к способу получения углеродсодержащего адсорбента на основе углеродных остатков риформинга лигнина и может быть использовано для адсорбции ароматических соединений из сточных вод.

В ранее проведенных работах были разработаны научные основы скоростного риформинга лигнина, на поверхности которого были сформированы наноразмерные никель- и железосодержащие каталитические частицы (M.V. Tsodikov, O.G. Ellert, S.A. Nikolaev, O.V. Arapova, G.I. Konstantinov, O.V. Bukhtenko, A.Yu.Vasilkov «The role of nanosized nickel particles in microwave-assisted dry reforming of lignin», Chemical Engineering Journal, 2017, 309, 628-637; и О.В. Арапова, М.В. Цодиков, А.В. Чистяков, С.С. Курдюмов, А.Е. Гехман, «Переработка лигнина в водородсодержащий газ под воздействием микроволнового излучения», ДАН, 2017, том 475, №4, с. 1-5). В этих работах были найдены подходы к созданию на поверхности бифункциональных активных компонентов, обладающих способностью к поглощению микроволнового излучения и каталитической активностью в углекислотном риформинге лигнина в синтез-газ (О.В. Арапова, М.В. Цодиков, А.В. Чистяков, С.С. Курдюмов, А.Е. Гехман, «Переработка лигнина в водородсодержащий газ под воздействием микроволнового излучения», ДАН, 2017, том 475, №4, с. 1-5). В результате углекислотный риформинг, стимулированный микроволновым излучением (МВИ), протекал в плазменно-каталитическом режиме при индуцированной температуре 750-800°С. Время протекания процесса составляло 10-15 мин. Конверсия органической массы лигнина составляла 63-65%, селективность в образовании синтез-газа состава Н2/СО ~ 1 - 92-94%, степень выделения водорода из лигнина - 95%. Углеродсодержащий остаток, содержание которого составляло 35-37%, был обогащен углеродом, содержание которого составляло 80-90% с удельной поверхностью остатка 2 м2/г (Таблица 1, обр. 1). Данные по исследованию состава и структуры остатка углекислотного риформинга лигнина показали, что на рентгенограмме остатка прослеживаются рефлексы кристаллического оксида кремния и в виде следов оксид железа. Данные электронной, ИК и КР - спектроскопии показали, что остаток представляет собой графитированную структуру, видны также графеноподобные плоскости. Данные мессбауэровской спектроскопии и электронной микроскопии показали, что в остатке наблюдаются два типа соединений оксидов железа: наноразмерные частицы нестехиометрического магнетита и частицы типа ядро-оболочка, в которых в качестве ядра с размером 6-8 нм представлены магнетитом, покрытым слоем 1-2 нм нестехиометрического карбида FeCx (M.V. Tsodikov, O.G. Ellert, S.A. Nikolaev, O.V. Arapova, O.V. Bukhtenko, Yu.V. Maksimov, D.I. Kirdyankin, and A.Yu. Vasil'kov, « Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation», Journal of Nanoparticle Research, 2018, 20, №3, 86-101).

Задача предлагаемого изобретения заключается в разработке способа получения адсорбента из остатка углекислотного риформинга лигнина для удаления органических соединений с развитой удельной поверхностью и более высокой адсорбционной способностью по отношению к парам ароматических соединений: бензола, крезола и другим ароматическим соединениям.

Поставленная задача решается тем, что в способе получения углеродсодержащего адсорбента для удаления ароматических соединений из сточных вод, адсорбент получают из остатка углекислотного риформинга лигнина в синтез-газ, получаемый при микроволновом излучении в присутствии железосодержащих катализаторов, путем дополнительной обработки микроволновым излучением с частотой 2.40-2.50 ГГц и плотностью тока 100-150 мА в течение 20-40 мин в среде СО2 при индуцируемой излучением температуре 950-1000°С.

По другому варианту осуществления изобретения адсорбент получают из остатка углекислотного риформинга лигнина в синтез-газ, получаемый при микроволновом излучении в присутствии железосодержащих катализаторов, путем дополнительной обработки микроволновым излучением с частотой 2.40-2.50 ГГц и плотностью тока 100-150 мА в течение 20-40 мин в среде CO2 при индуцируемой излучением температуре 950-1000°С, после чего пористый углеродный адсорбент обрабатывают водным раствором гидроксида аммония и затем подвергают термоудару в муфельной печи при 400°С в среде Ar в течение 30 мин.

Перед обработкой микроволновым излучением указанный остаток могут подвергать травлению разбавленной HCl.

Образец 2 готовят путем травления остатка разбавленной соляной кислотой. Этот подход был применен ранее в способе получения пористой структуры природного вермикулита и описан в работе (М.В. Цодиков, Я.Р. Кацобашвили, М.А. Передерий, Б.З. Чистяков, «Пористая структура вермикулита, активированного двухступенчатым кислотным травлением», Изв. РАЩсер. хим.), 1984, 6, с. 1237-124). Предварительное травление HCl проводят для зарождения на поверхности дефектов и удаления слабосвязанного железа, используемого ранее в качестве катализатора риформинга. После травления разбавленной HCl (10%-ый р-р) удельная поверхность возрастает до 16 м2/г (Табл. 1, обр. 2).

Образец 3 готовят путем углекислотной обработки остатка риформинга лигнина при микроволновом излучением и индуцированной температуре 950-1000С.

Образец 4 готовят путем дополнительной обработки микроволновым излучением образца 2, после травления остатка риформинга разбавленным раствором HCl, при индуцированной температуре 950-1000°С.

Образцы 5 и 6 готовят путем погружения образцов 3 и 4 в водный раствор NH4OH с последующим кратким термическим воздействием (термоударом) в муфельной печи, нагретой в среде Ar до 400°С, в течение 30 мин с последующим охлаждением в эксикаторе. Эта операция, так называемая термоударом, заключается в быстром разложении аммиака и испарением паров воды и NH3, адсорбированных в порах образца. В результате быстрого испарения происходит увеличение удельной поверхности до 519 м2/г для образца 5 и 578 м2/г для образца 6.

Предварительное травление HCl проводят для зарождения на поверхности дефектов и удаления слабосвязанного железа, используемого ранее в качестве катализатора риформинга. Обработку микроволновым облучением с частотой 2.40-2.50 ГГц и плотностью тока 100-150 мА проводят в течение 30 мин в среде CO2 при индуцируемой облучением температуре 900-1000°С. При этом инициируется реакция взаимодействия диоксида углерода с углеродом поверхности остатка:

CO2+С→2СО

В результате, как видно из табл 1, существенно возрастает величина удельной поверхности - до 366 м2/г.

Адсорбцию водного раствора гидроксида аммония с последующим термоударом проводят с целью механического воздействия продуктов разложения NH4OH и паров воды на возрастание удельной поверхности. В результате формируется высокопористое соединение, обладающее поверхностью - 578 м2/г, и обладающее высокой адсорбционной способностью - 0,82 г паров бензола на 1 г адсорбента.

Из табл. 1 видно, что без травления на 1-й ступени разбавленной HCl величина удельной поверхности, как после стадии микроволного облучения, так и после разложения предварительно адсорбированного водного раствора гидроксида аммония ниже, по сравнению с образцом, подвергнутым этим способам обработки, но предварительно обработанным разбавленной HCl.

На фиг. 1 приведена динамика изменения состава газа за 40 мин. обработки образца №2 микроволновым излучением, где кривые 1, 2, 3 соответствуют C1, СО, Н2. Как видно из Фиг. 1, к 30 минутам облучения наблюдается максимальное выделение СО и практически полное завершение выделения водорода и метана.

В таблице 2 представлен суммарный состав газа, полученный в процессе активации диоксидом углерода образца 3 за 30 мин микроволновым облучением. Как видно из таблицы, в составе газа доминирует монооксид углерода.

При подаче углекислотного газа с объемной скоростью 60 см3/мин за 30 минут воздействия расход CO2 составляет 1800 см3, из которых 900 см3 (50%) диоксида углерода расходуется на образование СО. При его выделении происходит образование пор в адсорбенте.

Из табл. 3 видно, что после обработке микроволновым излучением при повышенной температуре существенно возрастает адсорбционный объем микро- и мезопор и величина удельной поверхности для образцов 3 и 4, который составил 352 и 366 м2/г, соответственно (табл. 1, обр. №3 и 4).

Из полученных результатов следует, что графитообразный остаток углекислотного риформинга лигнина при дополнительной углекислотной обработке при воздействии МВИ и стимулированной температуре 950-1000°С приводит к образованию пористой структуры в результате взаимодействия диоксида углерода с углеродными атомами поверхности остатка.

В результате такой обработки существенным образом повышается удельная поверхность с образованием преимущественно супермикропор и мезопор с радиусом пор r - 20-25 (табл. 3).

W0, - объем микропор,

Е0, - характеристическая энергия адсорбции по бензолу;

Х0, - полуширина микропор;

а0, - предельная адсорбция;

Е - характеристическая энергия по азоту.

Расчет в области мезопор: Ws - объем сорбирующих пор;

объем мезопор Wme=WS - W0,

При этом, как видно из табл. 1 и 3, для образцов 3 и 4 существенно возрос суммарный объем и адсорбционная способность микро- и мезопор.

На фиг. 2 и 3 приведены изотермы адсорбции-десорбции азота для образцов 5 и 6 соответственно (по оси абсцисс - остаточное давление N2 (КПа); по оси ординат - адсорбционный и десорбционный объем пор (ммоль/г).

Полученные таким образом адсорбенты проявляют не только высокую адсорбционную способность, но и хемосорбционную активность. Изучение структуры адсорбированного альфа метилкрезола методом ИК-Фурье спектроскопии, показало, что в начальный период адсорбции наблюдается взаимодействие с кислородом поверхности адсорбента с последующим разрушением гидроксильной группы образованием ковалентной связи с активными центрами адсорбента.

Изотермы адсорбции-десорбции относится к "е"-типу [Кельцев Н.В. Основы адсорбционной техники. - М.: Химия. 1976; Дубинин М.М. Адсорбция и пористость. - М.: Изд. ВАХЗ. 1972], что скорее всего, характеризует возрастание щелевидных пор после воздействия термоудара.

Близкое расположение кривых адсорбции-десорбции является свидетельством образования супер-микро пор и малых мезопор, с усредненным значением условного радиуса для микропор 0,55 нм и мезопор, определенных из зависимости 2V/S - 2,4 нм, Табл. 3, образец №6). Энергетический параметр адсорбции, показывает возрастание объема микропор как результат взаимодействия CO2 на поверхность углеродсодержащего остатка при МВИ.

Суммарная адсорбционная активность образцов 5 и 6 возросла до 0,59 и 0,82 г бензола/гр адс.

Из табл. 1 видно, что без травления на 1-й ступени разбавленной HCl величина удельной поверхности, как после стадии микроволного облучения, так и после разложения предварительно адсорбированного водного раствора гидроксида аммония ниже, по сравнению с образцом, подвергнутым этим способом обработки, но предварительно обработанным разбавленной НСl. Скорее всего, предварительное травление НСl приводит к зарождению дефектов на поверхности и удалению части слабосвязанного железа, используемого ранее в качестве катализатора риформинга. На последующей стадии микроволнового излучения при более высокой температуре инициируется реакция взаимодействия диоксида углерода с углеродом поверхности. В результате, как видно из табл. 1 существенно возрастает величина удельной поверхности до 366 м2/г. Адсорбция водного раствора гидроксида аммония с последующим термическим ударом проводится с целью механического воздействия продуктов разложения NH4OH и паров воды на возрастание удельной поверхности. В результате формируется высокопористое соединение, обладающее поверхностью 578 м2/г и обладающее высокой адсорбционной способностью 0, 82 г паров бензола на 1 г адсорбента.

Разработанный способ получения адсорбента обладает перспективой разработки научных основ в малоотходной технологии переработки лигнина в важные энергоносители и адсорбенты, обладающие высокой адсорбционной и хемосорбционной способностью к ароматическим техногенным загрязнителям.

1. Способ получения углеродсодержащего адсорбента для удаления ароматических соединений из сточных вод, отличающийся тем, что адсорбент получают из остатка углекислотного риформинга лигнина в синтез-газ, получаемый при микроволновом излучении в присутствии железосодержащих катализаторов, путем дополнительной обработки микроволновым излучением с частотой 2,40-2,50 ГГц и плотностью тока 100-150 мА в течение 20-40 мин в среде СО2 при индуцируемой излучением температуре 950-1000°С.

2. Способ по п. 1, отличающийся тем, что перед обработкой микроволновым излучением указанный остаток подвергают травлению разбавленной HCl.

3. Способ получения углеродсодержащего адсорбента для удаления ароматических соединений из сточных вод, отличающийся тем, что адсорбент получают из остатка углекислотного риформинга лигнина в синтез-газ, получаемый при микроволновом излучении в присутствии железосодержащих катализаторов, путем дополнительной обработки микроволновым излучением с частотой 2,40-2,50 ГГц и плотностью тока 100-150 мА в течение 20-40 мин в среде СО2 при индуцируемой излучением температуре 950-1000°С, после чего пористый углеродный адсорбент обрабатывают водным раствором гидроксида аммония и затем подвергают термоудару в муфельной печи при 400°С в среде Ar в течение 30 мин.

4. Способ по п. 2, отличающийся тем, что перед обработкой микроволновым излучением указанный остаток подвергают травлению разбавленной HCl.



 

Похожие патенты:

Изобретение относится к получению углеродного сорбента из растительного углеродосодержащего сырья. Для осуществления способа используют волокнистые остатки растительного углеродосодержащего сырья, например сахарного тростника или подсолнечника, которые пропитывают раствором гидроксида калия концентрацией 1,0-4,0 моль/л, сушат и брикетируют.

Предусматривается способ очистки совокупности гранул смолы, при этом способ предусматривает приведение совокупности гранул смолы в контакт с водным раствором, где водный раствор содержит одно или несколько растворенных аминосоединений, а совокупность гранул смолы содержит полимер, который содержит присоединенные группы, представляющие собой остатки карбоновой кислоты, или группы, представляющие собой остатки сульфоновой кислоты, или их смесь.

Изобретение относится к области металлорганических координационных соединений с сорбционной активностью и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.

Изобретение относится к области металлоорганических координационных полимеров, обладающих сорбционной емкостью, в частности к получению микропористого 2-метилимидазолата цинка, и может быть использовано для создания адсорберов на CO2, паров органических соединений (бензол) или разделения газовых смесей CO2/N2, CO2/CH4.

Изобретение может быть использовано в химической промышленности. Способ производства высокопористой гашеной извести включает подачу негашеной извести, подачу воды в зону загрузки гидратора, гашение негашеной извести в зоне гашения гидратора и дозревание в зоне созревания гидратора для образования гашеной извести.

Изобретение относится к атомной энергетике и предназначено для очистки воздуха от газообразных соединений радиоактивного иода, в первую очередь его органических форм при очистке и контроле газообразных радиоактивных отходов.

Изобретение относится к способу получения привитой полимером и функционализированной нетканой мембраны, приспособленной для использования в процессах разделения, и полученной таким способом мембране, а также к способам разделения с применением мембраны.

Изобретение относится к пористому волокну, которое может эффективно адсорбировать удаляемое целевое вещество из обрабатываемой текучей среды, а также к колонне очистки, которая включает в себя это пористое волокно.

Изобретение относится к способу получения сорбента для очистки сточных вод гальванических, текстильных, кожевенных и других предприятий. Предложен способ получения сорбента для извлечения бихромат-анионов из водного раствора.
Изобретение относится к получению ионообменных сорбентов. Предложен способ получения осветляющего ионообменного сорбента в форме гранул.

Изобретение относится к новому синтетическому кристаллическому материалу ЕММ-28, который синтезирован в присутствии органического направляющего агента (Q) для формирования структуры, выбранного из одного или более из следующих дикатионов: ЕММ-28 можно использовать в реакциях превращения органических соединений и сорбционных процессах.
Наверх