Способ фотометрической идентификации и определения концентрации компонентов баковой смеси

Изобретение относится к области аналитической химии и касается способа фотометрической идентификации и определения концентрации компонентов баковой смеси. Способ заключается в отборе аликвоты смеси, ее разбавлении, введении реагента-индикатора определяемого иона, фотометрическом определении концентрации иона. При этом в каждый компонент баковой смеси на стадии производства вводят ион-метку в количестве, на порядок превышающем фоновый уровень содержания данного иона в компоненте баковой смеси, аликвоту последовательно разбавляют органическим полярным растворителем с диэлектрической проницаемостью, равной 12-50 Ф/м, и водой в объемном отношении аликвота:растворитель:вода, равном 1:0,5-11,05:0-7,55, а по концентрации иона-метки определяют содержание компонента в баковой смеси. Технический результат заключается в повышении точности приготовления растворов и обеспечении возможности определения контрафактной продукции. 3 з.п. ф-лы, 1 табл.

 

Изобретение относится к аналитической химии, а именно к способу экспресс-анализа в полевых условиях компонентов баковых смесей, применяемых в качестве комплексных растворов системы химической защиты растений (СХЗР).

Наиболее близким является способ определения концентрации ионов посредством фотометрического измерения раствора аликвоты после ее разбавления раствором-индикатором. Полученный результат сопоставляют с калибровочными данными и определяют концентрацию ионов [патент DE 201610208967, МПК G01N 21/31, G01N 21/64, G01N 21/77, G01N 33/18; 2017].

Недостатком способа является невозможность его применения для идентификации компонентов баковых смесей.

Задачей является разработка способа идентификации и определения концентрации компонентов баковых смесей, позволяющего осуществлять контроль приготовления растворов системы химической защиты растений, контроль правильности дозирования компонентов, а также позволяющего определять качественный и количественный состав готовых смесей и выявлять контрафактные препараты.

Техническим результатом является повышение точности приготовления растворов системы химической защиты растений, возможность определения контрафактной продукции, что позволяет повысить эффективность систем химической защиты растений.

Технический результат достигается в способе фотометрической идентификации и определения концентрации компонентов баковой смеси, заключающемся в отборе аликвоты смеси, ее разбавлении, введении реагента-индикатора определяемого иона, фотометрическом определении концентрации иона, при этом в каждый компонент баковой смеси на стадии производства вводят ион-метку, в количестве, на порядок превышающем фоновый уровень содержания данного иона в компоненте баковой смеси, аликвоту последовательно разбавляют органическим полярным растворителем с диэлектрической проницаемостью равной 12-50 Ф/м и водой в объемном отношении аликвота : растворитель : вода равном 1:0,5-11,05:0-7,55, а по концентрации иона-метки определяют содержание компонента в баковой смеси.

Способ фотометрической идентификации и определения концентрации компонентов баковой смеси, характеризующийся тем, что в качестве компонентов баковой смеси используются пестициды.

Способ фотометрической идентификации и определения концентрации компонентов баковой смеси, характеризующийся тем, что в качестве компонентов баковой смеси используются гербициды.

Способ фотометрической идентификации и определения концентрации компонентов баковой смеси, характеризующийся тем, что в качестве компонентов баковой смеси используются пестициды и гербициды.

В настоящее время в сельском хозяйстве в России и за рубежом интенсивно используются «баковые смеси» (tank-mixes) - растворы, состоящие из нескольких функционально разнонаправленно действующих биоактивных компонентов различной химической природы, нестабильных в воде и, возможно, находящихся в антагонизме друг к другу, в частности - смеси пестицидов и гербицидов. Приготовление баковых смесей, как правило, производится в полевых условиях, а состав конкретной смеси может существенно варьироваться в зависимости от возделываемой культуры и географического региона применения. Анализировать рабочий раствор на содержание каждого компонента непосредственно в полевых условиях не представляется возможным в виду сложности такого анализа, требующего дорогостоящего оборудования и условий специализированной химической лаборатории. Соответственно возникает проблема экспрессного экономичного метода входного контроля, контроля правильности дозирования, а также выявления контрафактных препаратов.

Сущность предложенного способа идентификации и определения концентрации компонентов баковых смесей заключается во введении на производственных объектах поставщика-производителя средств защиты растений индивидуальных неорганических ионов-меток в каждый пестицид и/или гербицид. Введенные ионы-метки позволяют фотометрическим методом определить соответствие приготовленного раствора требуемому качественному и количественному составу компонентов баковой смеси (системы химической защиты растений), определить состав готовой смеси и проверить подлинность исходных препаратов. Таким образом, обеспечивается качество баковых смесей, что повышает эффективность системы химической защиты растений (СХЗР).

Основные требования, предъявляемые к вводимому иону: метка не должна «маскироваться» компонентами смеси, не должна наносить ущерба окружающей среде, должна без осложнений выявляться фотометрически на фоне пестицидной и/или гербицидной композиции, и не должна мешать фотометрическому определению других ионов-меток, введенных в другие компоненты баковой смеси. Поскольку точное содержание меток в исходных компонентах баковых смесей известно, то определение их соотношения в баковой смеси в полевых условиях позволяет устанавливать и контролировать количественное соотношение компонентов смеси - пестицидов и/или гербицидов.

На стадии производства в компоненты баковых смесей вводятся специальные соли ионов переходных металлов (метки) в строго оговоренных количествах, на порядок превышающих фоновый уровень. Каждому компоненту (пестицид, гербицид) соответствует своя ион-метка.

Для идентификации компонента баковых смесей (СХЗР) осуществляют гомогенизацию смеси и добавление стандартного реагента-индикатора. При этом для достижения оптической прозрачности рабочего раствора СХЗР используют органические растворители.

Использование органических растворителей обосновано поведением дисперсной системы рабочего раствора СХЗР при разбавлении. Простое разбавление водой (даже в 20-50 раз) не приводит к получению истинного раствора из исходной коллоидной системы, так как вследствие мицеллобразования раствор приобретает интенсивное Рэлеевское рассеяние и опалесцирует, ввиду чего становится оптически непрозрачным. Введение органического растворителя в рабочий раствор СХЗР позволяет снизить диэлектрическую проницаемость среды и, как следствие, разрушить мицеллы, образованные активными компонентами СХЗР и адъювантами. В результате разбавления раствор становится оптически прозрачным, что позволяет его анализировать.

В качестве органических растворителей могут быть использованы органические растворители по структуре относящиеся к разным классам соединений. Наиболее предпочтительными являются слабо полярные растворители с диэлектрической проницаемостью ε=12÷50 Ф/м, например, спирты (метанол, этанол, н-пропанол, изопропанол, этиленгликоль), кетоны (ацетон, бутанон-2), гетероциклические соединения (тетрагидрофуран, диоксан, пиридин, морфолин, метилпирролидон), диметилсульфоксид (ДМСО), N,N-диметилформамид (ДМФА), ацетонитрил.

Полученный оптически прозрачный раствор исследуют при помощи фотоколориметра или спектрофотометра. Полученный результат сопоставляется с данными градуировочного графика (приобретается в комплекте с каждым пестицидом и гербицидом). Определяется концентрация иона, с помощью которой высчитывается содержание компонента в смеси.

Способ позволяет осуществлять анализ как индивидуальных компонентов баковых смесей, так и самих баковых смесей.

В таблице представлены примеры баковых смесей (СХЗР).

Изобретение иллюстрируется следующими примерами.

Пример 1. Идентификация и определение концентрации компонентов раствора СХЗР.

а). Экспресс-определение массовой доли компонента Декстер КС в растворе СХЗР по содержанию метки кобальта Со2+.

В мерную колбу вместимостью 100 мл помещают с помощью пипетки 20 мл анализируемого раствора СХЗР, вносят 2 мл раствора соляной кислоты (5 мас. % водный раствор), 2 мл раствора роданида калия (или аммония) (50 мас. % водный раствор), несколько капель раствора аскорбиновой кислоты (10 мас. % водный раствор) до исчезновения красной окраски и 1 мл избытком.

Далее вносят 20 мл изопропилового спирта, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки изопропиловым спиртом; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 570-650 нм (λmax=620 нм) по отношению к раствору сравнения, не содержащему кобальта Со2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят содержание кобальта Со2+ (А) в анализируемом растворе (мкг). Массовую концентрацию кобальта Со2+ в анализируемом растворе находят по формуле

где

20 - объем аликвоты раствора СХЗР, мл;

А - массовое содержание иона-метки (для примера 1а - кобальта Со2+) в пробе, мкг.

Массовую долю компонента Декстер КС (X) в 1 л раствора СХЗР определяют по формуле

где

К - коэффициент раствора СХЗР в пересчете на содержание иона-метки (мл/мкг) - для кобальта Со2+ в Декстер КС составляет 0,1 мл/мкг;

А - массовое содержание кобальта Со2+ в пробе, мкг.

б). Экспресс-определение массовой доли компонента Агрон BP в растворе СХЗР по содержанию метки фосфат-ионов.

В полевых условиях отбирают 20 мл баковой смеси (СХЗР) и помещают их с помощью пипетки в мерную колбу вместимостью 100 мл, вносят 2 капли раствора реактива на фосфаты (ГОСТ 10671.6). Через 3 минуты добавляют 1 каплю раствора олова двухлористого в глицерине (ГОСТ 10671.6).

Далее вносят 10 мл ацетона, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки ацетоном; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 670-730 нм (λmax=712 нм) по отношению к раствору сравнения, не содержащему фосфат-ионов , используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание фосфат-иона (А) в анализируемом растворе (мкг).

Массовую концентрацию фосфат-ионов в анализируемом растворе находят по формуле (1).

Массовую долю компонента Агрон BP (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на фосфат-ионы составляет 0,075 мл/мкг;

А - массовое содержание фосфат-ионов в пробе, мкг.

в). Экспресс-определение массовой доли компонента Кари Макс Флюид в растворе СХЗР по содержанию метки никеля Ni2+.

В полевых условиях отбирают 20 мл баковой смеси и помещают с помощью пипетки в мерную колбу вместимостью 250 мл, вносят 2 мл раствора диметилглиоксима (1 мас. % водный раствор), 2 мл раствора аммония надсернокислого (4 мас. % водный раствор), 5 мл аммиака.

Далее вносят 140 мл этиленгликоля отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки этиленгликолем; если наблюдается помутнение - доводят до метки дистиллированной водой.

Через 10 минут определяют оптическую плотность раствора при длине волны λ 420-470 нм (λmax=445 нм) по отношению к раствору сравнения, не содержащему никеля Ni2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят содержание никеля Ni2+ (А) в анализируемом растворе (мкг). Массовую концентрацию никеля Ni2+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Кари Макс Флюид (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на никель Ni2+ составляет 0,1 мл/мкг;

А - массовое содержание никеля Ni2+ в пробе, мкг.

г). Экспресс-определение массовой доли компонента Бифор 22 К7 в растворе СХЗР по содержанию метки железа Fe3+.

В полевых условиях отбирают 20 мл баковой смеси и помещают в мерную колбу вместимостью 250 мл, вносят 2 мл раствора соляной кислоты (5 мас. % водный раствор), 2 мл раствора роданида калия (или аммония) (50 мас. % водный раствор).

Далее вносят 100 мл тетрагидрофурана, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки тетрагидрофураном; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 470-540 нм (λmax=495 нм) по отношению к раствору сравнения, не содержащему железа Fe3+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание железа Fe3+ (А) в анализируемом растворе (мкг). Массовую концентрацию железа Fe3+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Бифор 22 К7 (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на железо Fe3+ составляет 0,65 мл/мкг;

А - массовое содержание железа Fe3+ в пробе, мкг.

д). Экспресс-определение массовой доли компонента Легион Комби в растворе СХЗР по содержанию метки меди Cu2+.

В полевых условиях отбирают 20 мл баковой смеси и помещают с помощью пипетки в мерную колбу вместимостью 100 мл, вносят 5 мл раствора цитрата аммония (10 мас. % водный раствор), 2 мл раствора аммиака (20 мас. % водный раствор), 5 мл купризона (0,1 мас. % спиртовой раствор).

Далее вносят 60 мл ацетонитрила, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки ацетонитрилом; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 590-610 нм (λmax=600 нм) по отношению к раствору сравнения, не содержащему меди Cu2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание меди Cu2+ (А) в анализируемом растворе (мкг). Массовую концентрацию меди Cu2+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Легион Комби (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на медь Cu2+ составляет 0,2 мл/мкг;

А - массовое содержание меди Cu2+ в пробе, мкг.

Пример 2

а). Экспресс-определение массовой доли компонента Агрон BP в растворе СХЗР по содержанию метки железа Fe3+.

В полевых условиях отбирают 20 мл баковой смеси и помещают в мерную колбу вместимостью 100 мл, вносят 2 мл раствора соляной кислоты (5 мас. % водный раствор), 2 мл раствора роданида калия (или аммония) (50 мас. % водный раствор).

Далее вносят 10 мл диметилсульфоксида, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки диметилсульфоксидом; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 470-540 нм (λmax=495 нм) по отношению к раствору сравнения, не содержащему железа Fe3+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание железа Fe3+ (А) в анализируемом растворе (мкг). Массовую концентрацию железа Fe3+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Агрон BP (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на на железо Fe3+ составляет 0,65 мл/мкг;

А - массовое содержание железа Fe3+ в пробе, мкг.

б). Экспресс-определение массовой доли компонента Легион Комби в растворе СХЗР по содержанию метки кобальта Со2+.

В мерную колбу вместимостью 100 мл помещают с помощью пипетки 20 мл анализируемого раствора СХЗР, вносят 2 мл раствора соляной кислоты (5 мас. % водный раствор), 2 мл раствора роданида калия (или аммония) (50 мас. % водный раствор), несколько капель раствора аскорбиновой кислоты (10 мас. % водный раствор) до исчезновения красной окраски и 1 мл избытком.

Далее вносят 30 мл диметилфомамида, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки диметилфомамидом; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 570-650 нм (λmax=620 нм) по отношению к раствору сравнения, не содержащему кобальта Со2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят содержание кобальта Со2+ (А) в анализируемом растворе (мкг). Массовую концентрацию кобальта Со2+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Легион Комби (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на содержание кобальта Со2+ составляет 0,1 мл/мкг;

А - массовое содержание кобальта Со2+ в пробе, мкг.

в). Экспресс-определение массовой доли компонента Декстер КС в растворе СХЗР по содержанию метки никеля Ni2+.

В полевых условиях отбирают 20 мл баковой смеси и помещают с помощью пипетки в мерную колбу вместимостью 250 мл, вносят 2 мл раствора диметилглиоксима (1 мас. % водный раствор), 2 мл раствора аммония надсернокислого (4 мас. % водный раствор), 5 мл аммиака.

Далее вносят 70 мл этанола, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки этанолом; если наблюдается помутнение - доводят до метки дистиллированной водой.

Через 10 минут определяют оптическую плотность раствора при длине волны λ 420-470 нм (λmax=445 нм) по отношению к раствору сравнения, не содержащему никеля Ni2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят содержание никеля Ni2+ (А) в анализируемом растворе (мкг). Массовую концентрацию никеля Ni2+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Декстер КС (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на никель Ni2+ составляет 0,1 мл/мкг;

А - массовое содержание никеля Ni2+ в пробе, мкг.

г). Экспресс-определение массовой доли компонента Бифор 22 К7 в растворе СХЗР по содержанию метки меди Cu2+.

В полевых условиях отбирают 20 мл баковой смеси и помещают с помощью пипетки в мерную колбу вместимостью 250 мл, вносят 5 мл раствора цитрата аммония (10 мас. % водный раствор), 2 мл раствора аммиака (20 мас. % водный раствор), 5 мл купризона (0,1 мас. % спиртовой раствор).

Далее вносят 90 мл N-метилпирролидона, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки N-метилпирролидоном; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 590-610 нм (λmax=600 нм) по отношению к раствору сравнения, не содержащему меди Cu2+, используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание меди Cu2+ (А) в анализируемом растворе (мкг). Массовую концентрацию меди Cu2+ в анализируемом растворе находят по формуле (1).

Массовую долю компонента Бифор 22 К7 (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на медь Cu2+ составляет 0,2 мл/мкг;

А - массовое содержание меди Cu2+ в пробе, мкг.

д). Экспресс-определение массовой доли компонента Кари Макс Флюид в растворе СХЗР по содержанию метки фосфат-ионов.

В полевых условиях отбирают 20 мл баковой смеси (СХЗР) и помещают их с помощью пипетки в мерную колбу вместимостью 100 мл, вносят 2 капли раствора реактива на фосфаты (ГОСТ 10671.6). Через 3 минуты добавляют 1 каплю раствора олова двухлористого в глицерине (ГОСТ 10671.6).

Далее вносят 20 мл бутанона-2, отмеренные цилиндром, и тщательно перемешивают содержимое колбы. Оценивают прозрачность смеси: если раствор прозрачен - доводят до метки бутаноном-2; если наблюдается помутнение - доводят до метки дистиллированной водой.

Определяют оптическую плотность раствора при длине волны λ 670-730 нм (λmax=712 нм) по отношению к раствору сравнения, не содержащему фосфат-ионов , используя кюветы с толщиной поглощающего свет слоя 50 мм.

По градуировочному графику находят массовое содержание фосфат-иона (А) в анализируемом растворе (мкг).

Массовую концентрацию фосфат-ионов в анализируемом растворе находят по формуле (1).

Массовую долю компонента Кари Макс Флюид (X) в 1 л раствора СХЗР определяют по формуле (2)

где коэффициент раствора СХЗР (К) в пересчете на фосфат-ионы составляет 0,075 мл/мкг;

А - массовое содержание фосфат-ионов в пробе, мкг.

Таким образом, способ фотометрической идентификации и определения концентрации компонентов баковой смеси, заключающийся во введении на стадии производства в каждый компонент баковой смеси - пестицид и/или гербицид - иона-метки, в количестве, на порядок превышающем фоновый уровень содержания данного иона в компоненте баковой смеси, в отборе аликвоты смеси, введении реагента-индикатора определяемого иона, фотометрическом определении концентрации иона, последовательном разбавлении аликвоты органическим полярным растворителем с диэлектрической проницаемостью равной 12-50 Ф/м и водой в объемном отношении аликвота : растворитель : вода равном 1:0,5-11,05:0-7,55, и определении содержания компонента в баковой смеси по концентрации иона-метки, может быть использован для входного экспресс-контроля в полевых условиях содержания пестицидов/гербицидов в СХЗР в агрохимическом комплексе РФ и обеспечивает повышение точности приготовления растворов системы химической защиты растений, возможность определения контрафактной продукции, что позволяет повысить эффективность систем химической защиты растений.

1. Способ фотометрической идентификации и определения концентрации компонентов баковой смеси, заключающийся в отборе аликвоты смеси, ее разбавлении, введении реагента-индикатора определяемого иона, фотометрическом определении концентрации иона, отличающийся тем, что в каждый компонент баковой смеси на стадии производства вводят ион-метку в количестве, на порядок превышающем фоновый уровень содержания данного иона в компоненте баковой смеси, аликвоту последовательно разбавляют органическим полярным растворителем с диэлектрической проницаемостью, равной 12-50 Ф/м, и водой в объемном отношении аликвота:растворитель:вода, равном 1:0,5-11,05:0-7,55, а по концентрации иона-метки определяют содержание компонента в баковой смеси.

2. Способ по п. 1, отличающийся тем, что в качестве компонентов баковой смеси используются пестициды.

3. Способ по п. 1, отличающийся тем, что в качестве компонентов баковой смеси используются гербициды.

4. Способ по п. 1, отличающийся тем, что в качестве компонентов баковой смеси используются пестициды и гербициды.



 

Похожие патенты:

Изобретение относится к области измерительной техники и касается способа определения концентрации свинца (II) в водных образцах. Способ включает в себя приготовление размещенной на носителе полимерной сенсорной пленки, ее контакт с испытуемым образцом и определение концентрации свинца путем сравнения оптической плотности с градуировочной шкалой на длине волны света 580 нм.

Изобретение относится к аналитической химии, а именно к методам определения концентрации компонентов электролитов для тепловых химических источников тока (ТХИТ), и может быть использовано для определения галогенидов щелочных металлов при их совместном присутствии в твердых литиевых электролитах.

Группа изобретений относится к области, а именно к флуоресцентному маркировочному составу, состоящему из диспергируемого в воде флуоресцентного полимера, полученного путем полимеризации одного или нескольких полимеризируемых флуоресцентных мономерных звеньев и одного или нескольких нефлуоресцентных мономерных звеньев; растворителя и загустителя; при этом полимер имеет среднемассовую молекулярную массу от 2 до 2000 кДа; имеет спектр поглощения света в диапазоне от 310 до 400 нм и спектр эмиссии света в диапазоне от 400 до 750 нм, а также относится к способу установления факта проведенной уборки помещения, относится к комплекту для определения факта проведения уборки поверхности.

Настоящее изобретение относится к медицине, а именно к способу скрининга злокачественных опухолей органов грудной полости, включающему определение состава выдыхаемого воздуха неселективным методом анализа летучих органических соединений с использованием металлооксидных сенсоров с перекрестной чувствительностью, отличающемуся тем, что анализ летучих органических соединений осуществляют с одновременным использованием 7 металлооксидных хеморезисторных газовых сенсоров при последовательно устанавливаемых температурах 350, 400 и 450°С и дополнительно проводят цитологический анализ мокроты с изготовлением и микроскопическим исследованием 2 микропрепаратов, которые окрашивают гематоксилином и эозином, и при выявлении в отклике сенсоров на состав выдыхаемого воздуха статистически значимых отличий от контрольных значений, определенных заранее для используемых сенсоров, и одновременном обнаружении в микропрепаратах дисплазии и клеток рака диагностируют злокачественную опухоль.

Изобретение относится к области обнаружения, идентификации и дистанционного мониторинга углеводородных загрязнителей водных сред и может быть использовано для экспрессного визуального обнаружения разливов и утечек жидких углеводородных топлив.

Изобретение относится к тиксотропному средству для защиты от коррозии металлической поверхности, к способу нанесения его, к металлической структуре, покрытой средством для защиты от коррозии, к устройству, обеспечивающему обнаружение индикатора коррозии, и способу проверки металлической структуры на наличие коррозии.

Изобретение относится к области аналитической химии, а именно к способу определения содержания иодат-ионов, и может быть использовано для точного количественного и полуколичественного экспрессного, визуально-тестового определения иодата в пищевой соли.

Изобретение относится к способу определения свинца(II) в водных объектах окружающей среды и биологических образцах. Способ включает приготовление полимерной сенсорной пленки, которую помещают в испытуемый образец и по изменению цвета полимерной сенсорной пленки определяют наличие в нем свинца(II), количество которого определяют по калиброванной цветовой шкале, предварительно полученной из не менее 5-ти испытуемых образцов с известными концентрациями свинца.

Настоящее изобретение относится к аналитической химии, конкретно к индикаторной полосе РИБ-Диазо-Тест для индикаторного средства по определению подлинности лекарственного вещества.

Изобретение относится к аналитической химии, а именно к химическим индикаторам на твердофазных кремнеземных носителях, и может быть использовано для экспрессного определения предельно допустимых и опасных концентраций 1,1-диметилгидразина в воздухе.

Группа изобретений относится к области, а именно к флуоресцентному маркировочному составу, состоящему из диспергируемого в воде флуоресцентного полимера, полученного путем полимеризации одного или нескольких полимеризируемых флуоресцентных мономерных звеньев и одного или нескольких нефлуоресцентных мономерных звеньев; растворителя и загустителя; при этом полимер имеет среднемассовую молекулярную массу от 2 до 2000 кДа; имеет спектр поглощения света в диапазоне от 310 до 400 нм и спектр эмиссии света в диапазоне от 400 до 750 нм, а также относится к способу установления факта проведенной уборки помещения, относится к комплекту для определения факта проведения уборки поверхности.
Наверх