Электропроводящие материалы, диспергированные в непроводящем органическом материале

Изобретение относится к области токопроводящих, экранирующих и герметизирующих эластомерных материалов и применяется в различных радиотехнических ВЧ и СВЧ устройствах гражданского, военного и космического назначения в качестве токопроводящих уплотнителей, элементов экранировки и защиты от электромагнитных помех (ЭМП). Токопроводящий эластомер состоит из связующего компонента на основе силикона, или фторсиликона, или этиленпропиленового сополимера, содержит в качестве электропроводящего наполнителя мелкодисперсные частицы сферической формы с размерами от 50 до 100 мкм алюминия, или графита, или меди, покрытые серебром. В состав внесены мелкодисперсные частицы сферической формы с размерами от 10 до 40 мкм алюминия, или графита, или меди, покрытые серебром. Изобретение позволяет повысить объемную долю токопроводящего наполнителя в материале при сохранении других основных физических характеристик, а также увеличить удельное количество точек контакта на единицу сечения. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к области токопроводящих, экранирующих и герметизирующих эластомерных материалов, и применяется в различных радиотехнических ВЧ и СВЧ устройствах гражданского, военного и космического назначения в качестве токопроводящих уплотнителей, элементов экранировки и защиты от электромагнитных помех (ЭМП).

Из уровня техники известна серия материалов ECE фирмы «Laird Technologies» (https://www.laird.com/sites/default/files/2019-09/EMI-CAT-ECE%20080615%20EletroSeal.pdf), материалов CHO-SEAL фирмы «Parker Hannifin Corporation» (https://www.parker.com/Literature/Chomerics/Parker%20Chomerics%20Sheet%20Stock%20and%20Fabricated%20Parts.pdf), материалов серии 5750 фирмы Holland Shielding Systems BV (https://hollandshielding.com/content/Filemanager/5750-S%20-%20Conductive%20rubber%20sheets%20Technical%20datasheet.pdf_November-6-2019-827am.pdf), материалы серии 1210, 1211 фирмы Kemtron (https://kemtron.co.uk/wp-content/uploads/pdfs/en/emc/kt-en-conductive-elastomers-01-2020.pdf), имеющих объемное сопротивление менее 0,01 Ом⋅см (по методу MIL-DTL 83528), выполненных на основе силикона, или фторсиликона, или этиленпропиленового сополимера с применением в качестве проводящего наполнителя мелкодисперсных частиц стекла, алюминия, или графита, или меди, покрытых серебром или никелем.

Наиболее близким к заявляемому изобретению по наибольшему числу существенных признаков является серия материалов CHO-SEAL фирмы «Parker Hannifin Corporation» (https://www.parker.com/Literature/Chomerics/Parker%20Chomerics%20Sheet%20Stock%20and%20Fabricated%20Parts.pdf), имеющих диапазон температур эксплуатации от -65 до +160°С, объемное сопротивление менее 0,01 Ом⋅см (по методу MIL-DTL 83528), выполненных на основе силикона или фторсиликона с применением в качестве проводящего наполнителя мелкодисперсных частиц алюминия или меди, покрытых серебром.

Недостатком вышеописанных технических решений является низкая электрическая стабильность материалов, а именно значительное ухудшение объемного сопротивления вследствие воздействия нагревания и растягивания, а также низкий параметр экранировки в диапазоне ВЧ и СВЧ.

Основная задача, решаемая заявляемым изобретением, состоит в создании материала, обладающего повышенной стабильностью объемного сопротивления при воздействии нагревания, растягивания и увеличенному параметру экранировки в диапазоне ВЧ и СВЧ.

Поставленная задача решается тем, что в токопроводящий эластомер, состоящий из связующего компонента на основе силикона, или фторсиликона, или этиленпропиленового сополимера, содержащего в качестве электропроводящего наполнителя мелкодисперсные частицы сферической формы с размерами от 50 до 100 мкм алюминия, или графита, или меди, покрытые серебром, согласно предложенному решению, внесены мелкодисперсные частицы сферической формы с размерами от 10 до 40 мкм алюминия, или графита, или меди, покрытые серебром.

Дополнительно в состав материала могут быть внесены мелкодисперсные частицы дендритной формы алюминия или меди, покрытые серебром.

Заявленное изобретение поясняется рисунками, где на фиг. 1, А показана упрощенная структура материала прототипа, на фиг. 1, Б - упрощенная структура предлагаемого материала с мелкодисперсными частицами сферической формы, на фиг. 1, В - упрощенная структура предлагаемого материала с мелкодисперсными частицами дендритной формы.

Во всех вариантах, представленных на рисунках, основную массу токопроводящего наполнителя составляют сравнительно крупные частицы 1 сферической формы с размерами от 50 до 100 мкм, имеющие ряд преимуществ по сравнению с частицами меньшего размера и более сложной формы:

- их производство несет меньшие материальные затраты;

- обеспечивается необходимая твердость и эластичность материала;

- большая площадь контакта между соседними частицами обеспечивает высокую электрическую проводимость.

При этом количество точек контакта 2 на единицу сечения материала сравнительно небольшое, поэтому механическое растягивание и нагревание материала приводит к значительной нестабильности объемного сопротивления материала. Кроме того, высокая объемная доля связующего компонента 3, являющегося диэлектриком, обусловленная значительным объемом пустот между частицами наполнителя, заполняющихся связующим компонентом, ухудшает параметр экранировки материала на СВЧ.

Для сведения этих недостатков к минимуму необходимо увеличить объемную долю токопроводящего наполнителя в материале. С этой целью в материал, как показано на фиг. 1, Б, добавляются частицы меньшего размера 4 сферической формы, заполняющие пустоты между частицами большего размера и увеличивающие количество точек контакта 2 на единицу сечения материала.

Еще более выраженный эффект достигается при добавлении частиц дендритной формы 5, которые деформируются при прессовании изделий, принимая форму пустот между крупными сферическими частицами 1, и создают большое количество точек контакта (фиг. 1, В).

Техническим результатом заявленного изобретения является повышение объемной доли токопроводящего наполнителя в материале при сохранении других основных физических характеристик, а также увеличение удельного количества точек контакта 2 на единицу сечения. Параметром, однозначно характеризующим объемную долю токопроводящего наполнителя в материале, является плотность материала (поскольку плотность металла в несколько раз выше плотности связующего компонента). Так, у прототипа плотность материала схожего состава составляет около 3,5 г/см3, а плотность заявленного материала превышает 5,0 г/см3.

Проведенные сравнительные испытания образцов заявленного материала и прототипа, выполненных с применением фторсиликона и частиц меди и алюминия, покрытых серебром, показали результаты, приведенные в таблице 1.

Таблица 1 Результат сравнительного испытания образцов материалов

Исследуемый параметр Изобретение Прототип
CHO-SEAL 1215
Средняя величина объемного сопротивления
по методу MIL-DTL 83528, Ом⋅см
0,004 0,004
Ухудшение объемного сопротивления после растягивания по методу MIL-DTL 83528, Ом*см макс. 0,006 0,008
Ухудшение объемного сопротивления после нагрева по методу MIL-DTL-83528, Ом*см макс. 0,008 0,01
Величина экранировки материала
по методу MIL-DTL 83528, на частоте 10 ГГц дБ
130 120
Величина экранировки материала
по методу MIL-DTL 83528, на частоте 40 ГГц дБ
110 90

1. Токопроводящий эластомер, состоящий из связующего компонента на основе силикона, или фторсиликона, или этиленпропиленового сополимера, содержащий в качестве электропроводящего наполнителя мелкодисперсные частицы сферической формы с размерами от 50 до 100 мкм алюминия, или графита, или меди, покрытые серебром, отличающийся тем, что в состав внесены мелкодисперсные частицы сферической формы с размерами от 10 до 40 мкм алюминия, или графита, или меди, покрытые серебром.

2. Токопроводящий эластомер по п. 1, отличающийся тем, что в состав внесены мелкодисперсные частицы дендритной формы алюминия или меди, покрытые серебром.



 

Похожие патенты:

Изобретение относится к области защиты от незаконного чтения RFID-меток. Технический результат заключается в повышении уровня защиты от незаконного чтения или записи RFID-меток.

Изобретение относится к устройствам защиты СВЧ модулей от внешнего и внутреннего паразитного электромагнитного излучения (ЭМИ) и может быть использовано для экранирования узлов СВЧ модуля от любого ЭМИ.

Изобретение относится к мобильному терминалу и, в частности, к теплоотводящей и экранирующей конструкции мобильного терминала. Технический результат – обеспечение возможности выполнения мобильного терминала и теплоотводящей и экранирующей конструкции легче и тоньше.

Устройство для поглощения электрических помех в кабелях содержит корпус, состоящий из двух чашевидных деталей, шарнирно соединенных друг с другом. Каждая из чашевидных деталей предназначена для приема ферритового элемента.

Использование: для экранирования электромагнитных полей. Сущность изобретения заключается в том, что электромагнитный экран содержит герметичную оболочку, внутри которой расположена гелеобразная композиция, образованная гелем с частицами материалов, взаимодействующих с электромагнитным излучением, оболочка выполнена из материала с низкой паропроницаемостью, дисперсионная среда геля является диэлектрической жидкостью, при этом частицы материалов, взаимодействующих с электромагнитным излучением, обладают минимальным отражением электромагнитного излучения и максимальным поглощением электромагнитного излучения, а содержание в гелеобразной композиции частиц материалов, взаимодействующих с электромагнитным излучением, составляет не более 50 мас.

Изобретение относится к области разработки устройств защиты от электромагнитного излучения, а именно к способам и устройствам по оценке эффективности средств экранирования, и может быть использовано при разработке защитных покрытий радиоэлектронной аппаратуры.

Изобретение относится к области электроники, а именно к конструкциям корпусов для усилителей мощности, и может быть использовано для отвода теплового излучения от электронных компонентов усилителя, а также их экранирования от электромагнитного излучения.

Изобретение относится к области радиотехники, в частности к экранирующим устройствам, обеспечивающим электромагнитную совместимость радиоэлектронной аппаратуры в области энергоинформационной защиты средств обработки и отображения информации.

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и технических объектов.

Изобретение относится к области радиотехники, в частности защиты от электромагнитных помех радиоэлектронной аппаратуры, и может найти применение в создании корпусов радиоэлектронной аппаратуры с повышенной эффективностью экранирования контактного торцевого соединения разъемных корпусов.

Изобретение относится к производству функциональных композиционных материалов (электрических проводников, проводников тепла и т.п.), которые получают из порошков с покрытием.
Наверх