Способ электрохимического окисления спиртов в нитрилы


C25B3/02 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2724898:

федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет", (ДГТУ) (RU)

Изобретение относится к способу электрохимического окисления спиртов в нитрилы, включающему предварительное приготовление реакционной смеси, состоящей из окисляемого спирта, водного раствора гидрокарбоната натрия, органического растворителя, в качестве которого используется хлористый метилен, йодида калия, нитроксильного радикала ряда 2,2,6,6-тетраметилпиперидина, пиридина, а также добавки фторида аммония в качестве источника азота, проведение электролиза при температуре 25-30ºС, который заканчивают после пропускания 5 F электричества. Технический результат заключается в снижении энерго- и трудозатрат, создании способа, позволяющего получать нитрилы в одну стадию, при комнатной температуре и атмосферном давлении без предварительного выделения промежуточных продуктов. 3 пр.

 

Изобретение относится к способу получения нитрилов непрямым электрохимическим окислением первичных алифатических спиртов под действием постоянного тока на электролит, представляющего собой двухфазную систему (хлористый метилен-вода).

Нитрилы являются перспективными продуктами для химической промышленности. Они представляют интерес в качестве промежуточных звеньев в синтезе фармацевтических препаратов, агрохимикатов и других полезных молекул. В последние годы замечен подъем интереса к комплексам нитрилов с солями металлов, относящихся к d-элементам. Установлено, что эти комплексы обладают выраженными антимикробными свойствами, являются полифункциональными присадками к нефтяным маслам, придавая последним противоизносные, противозадирные и антикоррозионные свойства.

Классическим способом их получения является реакция цианирования (Koelscha, C.F. The rosenmund-von braun nitrile synthesis /C.F. Koelscha. G. Whitney// J. Org. Chem. 1941.Vol. 06. № 6. P. 795-803). Данный способ основан на цианировании спиртов, с помощью таких реагентов, как CuCN, TsCN, Zn(CN)2 и Me3SiCN, однако, несмотря на эффективность данного способа и дешевизну используемых реагентов, он имеет и существенный недостаток, а именно их отравляющее действие на человека и окружающую среду.

Существует способ окисления спиртов до нитрилов (Z. Fan, X. Yang, C.Chen, Z. Shen, M. Li One-pot electrochemical oxidation of alcohols to nitriles mediated by TEMPO, Journal of The Electrochemical Society, 2017, Vol. 164, №4, G54-G58). Способ основан на использовании в качестве электролита раствора перхлората натрия в ацетонитриле (NaClO4-CH3CN) в присутствии нитроксильного радикала, с добавкой ацетатаммония в качестве источника азота. Недостатками данного метода являются применение агрессивного окислителя нитроксильного радикала - перхлората натрия, а также проведение синтеза в только в органической фазе.

Известен способ получения нитрилов карбоновых кислот (А.с. SU 1 498 755, C07C 120/00, C07C 121/14, C07C 121/52, опубл. 07.08.1989), включающий приготовление реакционной смеси, состоящей из гексанамида, ацетонитрила и трифторуксусной кислоты (молярное соотношение 1:10:5). Данную смесь нагревают при 100ºС в течение 2 ч. Затем отгоняют смесь трифторуксусной кислоты и ацетонитрила, капронитрил и ацетамид в вакууме.

К недостаткам данного способа можно отнести необходимость поддерживать температуру синтеза равную 100ºС, также используемая трифторуксусная кислота в жидком и газообразном виде может вызывать сильные ожоги кожных покровов и слизистых оболочек.

Наиболее близким техническим решением является (патент RU 2671827, C25B 3/02, C07C 47/02, опубл. 07.11.2018) способ электрохимического окисления спиртов, включающий приготовление реакционной смеси, состоящей из окисляемого спирта, воды, органического растворителя, в качестве которого используется хлористый метилен, йодида калия, нитроксильного радикала ряда 2,2,6,6-тетраметилпиперидин с добавкой пиридина, после чего проводят электролиз при температуре 25-30ºС и заканчивают его после пропускания 2 F электричества, по окончании которого наблюдалось образование альдегида в количестве 95,2% по данным ГХМС.

Однако в описанном выше способе нет возможности расширить качественный состав продуктов окисления спиртов.

Задачей изобретения является создание экологически выгодного процесса окисления спиртов до карбонильных соединений, в частности нитрилов в энерго- и трудоэкономическом отношении.

Сущность изобретения заключается в том, что способ электрохимического окисления спиртов в нитрилы, включающий приготовление реакционной смеси, состоящей из окисляемого спирта, водного раствора гидрокарбоната натрия, органического растворителя, в качестве которого используется хлористый метилен, йодида калия, нитроксильного радикала ряда 2,2,6,6-тетраметилпиперидин, пиридина, а также добавки фторида аммония в качестве источника азота, проведение электролиза при температуре 25-30ºС и заканчивают после пропускания 5 F электричества.

Для проведения синтеза используется бездиафрагменная электрохимическая ячейка, снабженная водяной рубашкой для охлаждения. При указанной конструкции электролизера снижаются энергозатраты, так как не создается дополнительное сопротивление проходящему через ячейку электрическому току.

Техническим результатом предлагаемого изобретения являются сокращение времени превращения спирта, снижение энергозатрат, а также создание способа, позволяющего получать нитрилы в одну стадию при комнатной температуре и атмосферном давлении без выделения промежуточных соединений. Окисление спиртов до соответствующих нитрилов происходит в одном реакторе, без образования побочных продуктов, после пропускания 5 F электричества.

Результат достигается совмещением двух параллельно протекающих процессов, а именно электрохимического и химического. Электрохимически на аноде образуется первичный окислитель - йод, а в объеме электролита химически происходит окисление йодом 4-ацетиламино-2,2,6,6-тетраметилпиперидин-1-оксила до оксоаммониевого катиона, который далее окисляет спирт, а сам восстанавливается до нитроксильного радикала, который после регенерации возвращается в процесс. Вследствие наличия в зоне реакции источника азота происходит превращение альдегида в нитрил, что позволяет качественно изменить продукт синтеза.

В качестве первичного окислителя применяется йодид калия, который является безопасным и не токсичным реагентом в сравнении с йодом, а также не оказывает действие на другие легкоокисляющиеся группы.

Ниже приведены примеры реализации способа электрохимического окисления спиртов до нитрилов непрямым электрохимическим окислением первичных алифатических спиртов.

Пример 1. Электрохимическое окисление спирта постоянным током на примере окисления октанола до октанитрила.

Электролиз проводят в бездиафрагменном электролизере емкостью 150 мл, снабженном водяной рубашкой, термометром и механической мешалкой. Анод и катод платиновые пластинки, площадь анода ~ 8 см2, площадь катода ~ 3 см2.

В электролизер помещают 0,04 моль октанола, 0,004 моль пиридина и 0,004 моль нитроксильного радикала – 4-ацетиламино-2,2,6,6-тетраметилпиперидин-1-оксила (мольное соотношение спирт: НР - 1:0,1), растворенных в 40 мл хлористого метилена соответственно. Затем добавляют 0,06 моль NaHCO3, 0,04 моль KJ, 0,04 моль NH4F, растворенных в 80 мл дистиллированной воды. Синтез проводят при постоянном токе плотностью 0,05 А/см2. Продолжительность электролиза 5,3 часа (количество пропущенного электричества 5 F).

Меньшее время синтеза приводит к снижению выхода продукта, поскольку происходит неполное превращение исходного спирта, при пропускании более 5F электричества, в реакционной смеси, кроме нитрила наблюдаются побочные продукты окисления спирта. Было замечено, что оптимальной температурой для проведения синтеза является 25-30°С, использование более низкой температуры приводит к снижению скорости процесса, а вследствие и выхода, а применение более высокой температуры приводит к снижению выхода целевого продукта, в результате ускорения процессов окисления, ведущих к образованию побочных продуктов (эфиров, кислот). В качестве источника азота рассматривались хлорид и фторид аммония, а также солянокислый гидроксиламин. В ходе проведенных опытов было выявлено, что наилучшими выходами обладают синтезы, где в качестве азотсодержащей добавки использовался фторид аммония. После окончания синтеза водный и органический слои обрабатывают Na2S2O3 для устранения избытка йода (йод - крахмальная проба) и разделяют. Водный слой дополнительно экстрагируют хлористым метиленом, органические вытяжки объединяют, сушат безводным сульфатом натрия и отгоняют хлористый метилен в роторном испарителе. Содержание нитрила определяют методом ГХМС. Степень конверсии спирта составила 95%. Выход нитрила составил 88%.

Пример 2. Опыт проводили, как в примере 1, но без добавки пиридина. Степень превращения спирта 25%. Выход нитрила составил 24%.

Пример 3. Опыт проводили, как в примере 1, но в качестве пиридинового основания был взят 2,6-диметилпиридин был взят в количестве 0,04 моль. Степень превращения спирта 68%. Выход нитрила составил 56,3%.

Важными характеристиками предлагаемого способа являются одностадийное превращение спирта в нитрил, простота аппаратурного оформления процесса, доступность и экологичность реагентов, относительно низкая стоимость используемой медиаторной системы. Таким образом, заявляемое изобретение позволяет повысить выход целевого продукта, а также уменьшить время проведения синтеза.

Способ электрохимического окисления спиртов в нитрилы, включающий предварительное приготовление реакционной смеси, состоящей из окисляемого спирта, водного раствора гидрокарбоната натрия, органического растворителя, в качестве которого используется хлористый метилен, йодида калия, нитроксильного радикала ряда 2,2,6,6-тетраметилпиперидина, пиридина, а также добавки фторида аммония в качестве источника азота, проведение электролиза при температуре 25-30ºС, который заканчивают после пропускания 5 F электричества.



 

Похожие патенты:

Изобретение может быть использовано для приготовления активной массы электрода с частицами оксида кобальта на углеродном носителе, используемого в химических источниках тока, суперконденсаторах, в качестве носителя для катализаторов реакций, протекающих в топливных элементах.

Настоящее изобретение относится к ионообменной мембране, содержащей слой S, содержащий фторсодержащий полимер с группой сульфоновой кислоты; слой C, содержащий фторсодержащий полимер с группой карбоновой кислоты; и множество упрочняющих материалов, расположенных внутри слоя S и функционирующих в качестве по меньшей мере одной из армирующей нити и удаляемой нити; причем A и B, обе из которых определены ниже, удовлетворяют следующим формулам (1) и (2): B ≤ 240 мкм (1), 2,0 ≤ B/A ≤ 5,0 (2).

Изобретение относится к способу получения электролитического гипохлорита натрия электролизом природной минерализованной воды. Способ характеризуется тем, что перед электролизом воду подвергают ультразвуковому воздействию продолжительностью 15 минут с частотой 42 кГц, ультразвуковой мощностью 50 Вт, интенсивностью 5 Вт/см2 в ультразвуковом реакторе.

Изобретение относится к области получения нанопорошков кремния и может быть использовано в стоматологии и биомедицине для получения фотолюминесцентных меток. Способ получения нанопорошков пористого кремния, включает травление подкисленным концентрированной серной кислотой до значения рН 4 водным раствором фторида аммония NH4F исходного монокристаллического кремния в ячейке электрохимического анодного травления с контрэлектродом из нержавеющей стали, промывку полученного пористого материала в дистиллированной воде, механическое отделение от кристаллической подложки, измельчение, сушку полученного порошка в естественных условиях, при этом водный раствор фторида аммония NH4F используют концентрацией, равной 40%.

Изобретение относится к электроду для электролиза, содержащему: проводящую подложку; и слой катализатора, сформированный на поверхности проводящей подложки, причем слой катализатора содержит элемент рутений, элемент иридий, элемент титан и по меньшей мере один первый элемент-переходный металл, выбранный из группы, состоящей из V, Cr, Fe, Co, Cu и Zn, относительное содержание первого элемента-переходного металла, содержащегося в слое катализатора, в расчете на 1 моль элемента титана составляет 0,25 мол.% или более и менее 3,4 мол.%, и значение D, являющееся показателем емкости двойного электрического слоя электрода для электролиза, составляет 120 Кл/м2 или более и 420 Кл/м2 или менее.

Изобретение относится к двум вариантам электролитического устройства. Устройство по одному варианту содержит: резервуар для воды, содержащий незаполненное пространство для вмещения воды; электролитическую ванну, расположенную в незаполненном пространстве резервуара для воды, содержащую камеру и внутреннюю стенку камеры, имеющую множество элементов для удержания, причем электролитическая ванна содержит верхнюю пластину и крышку, выполненную над верхней пластиной; и множество электродов, соединенных с множеством элементов для удержания и расположенных отдельно, при этом верхняя пластина электролитической ванны расположена над множеством электродов.

Изобретение относится к двум вариантам устройства для электролиза воды. По одному варианту устройство содержит: корпус, имеющий вмещающее пространство; электролизер, расположенный во вмещающем пространстве корпуса, при этом электролизер содержит катод и анод, причем на катоде выделяется водородный газ, а на аноде выделяется кислородный газ во время электролиза воды; встроенный резервуар для воды, выполненный с возможностью подачи воды в электролизер, содержащий отверстие для воды, отверстие для водорода, отверстие для кислорода и трубку для подачи воздуха; и воздушный насос, соединенный с трубкой для подачи воздуха патрубком для подачи воздуха, при этом воздушный насос направляет воздух из окружающей среды снаружи устройства для электролиза воды в трубку для подачи воздуха для разбавления водородного газа; причем угол наклона между патрубком для подачи воздуха и трубкой для подачи воздуха составляет менее 90 градусов; при этом отверстие для воды выполнено с возможностью подачи воды в электролизер, а отверстие для водорода и отверстие для кислорода выполнены с возможностью приема водородного газа и кислородного газа соответственно.
Изобретение относится к металлургии, а именно к листу титанового сплава для электрода, используемого в качестве основного материала для электрода в электролитической ячейке при электролизе.

Предложена система обработки воды с использованием устройства для электролиза водного раствора щелочи и щелочного топливного элемента, где (1) устройство для электролиза водного раствора щелочи и щелочной топливный элемент соединены друг с другом, (2) раствор электролита, получаемый смешиванием сырьевой воды и водного раствора щелочи с приведением смеси к концентрации от 5 до 60 мас.%, и количество воды, соответствующее потерям воды в результате электролитической обработки, подают в устройство для электролиза водного раствора щелочи и осуществляют непрерывную электролитическую обработку, при этом концентрацию щелочи поддерживают на уровне исходной концентрации от 5 до 60 мас.%, а раствор электролита рециркулируют для снижения объема сырьевой воды, образования газообразного кислорода в анодном отделении устройства для электролиза водного раствора щелочи и образования газообразного водорода в катодном отделении устройства для электролиза водного раствора щелочи, (3) раствор электролита, приготовленный из водного раствора щелочи, приведенный к концентрации от 5 до 60 мас.%, и газообразный кислород и газообразный водород, образующиеся при посредстве устройства для электролиза водного раствора щелочи, подают в щелочной топливный элемент, по меньшей мере часть газообразного кислорода и газообразного водорода используют для выработки электрической мощности при помощи щелочного топливного элемента, электрическую энергию и воду накапливают, и (4) накопленную электрическую энергию подают в устройство для электролиза водного раствора щелочи для использования в качестве его источника электрической мощности, а часть накопленной воды или всю накопленную воду подают в циркуляционную линию раствора электролита в устройстве для электролиза водного раствора щелочи для продолжения электролитической обработки, в результате чего часть каждого из: электрической энергии, требующейся устройству, предназначенному для электролиза водного раствора щелочи, и щелочному топливному элементу, газообразного водорода и газообразного кислорода, служащих в качестве сырьевых материалов для электрической энергии, и количества воды, соответствующего потерям воды в результате электролитической обработки, эффективно используются, будучи при этом циркулирующими в системе обработки воды.
Изобретение относится к получению наноразмерного порошка силицида металла. Загружают в герметичный тигель электролит, состоящий из галогенида щелочного металла и соли металла, и расходуемые компоненты микронных размеров в виде порошков металла и кремния, производят нагрев до рабочих температур синтеза силицида металла выше точки плавления электролита с получением ионного расплава в атмосфере аргона или углекислого газа.

Настоящее изобретение относится к способам превращения эфиров акриловой кислоты или их производных в дифторпропионовую кислоту или ее производные. Способ получения производных 2,3-дифторпропионовой кислоты включает образование реакционной смеси, содержащей фторуглеводородный или фторуглеродный растворитель, фтористый газ и соединение формулы 5 с образованием соединения формулы 6, и приведение в контакт соединения формулы 6 со спиртом и катализатором; где реакционная смесь содержит по меньшей мере приблизительно 50% соединения формулы 6 на основе числа молей соединения формулы 5, добавленных к реакционной смеси.
Наверх