Способ получения ti2mnal

Изобретение относится к области металлургии, в частности к получению объемных слитков спин-поляризованного бесщелевого полупроводника Ti2MnAl, который может быть использован в спинтронике. Способ получения Ti2MnAl из элементарных титана, марганца и алюминия включает помещение навесок марганца и алюминия в капсулу из титана, закрытие крышкой из титана и проведение плавки во взвешенном состоянии с использованием высокочастотного индукционного нагрева, причем плавку проводят в атмосфере инертного газа при температуре 1700-1730°С в течение 15-20 минут с последующей закалкой расплава до комнатной температуры. Обеспечивается получение объемных слитков с однородным составом. 3 ил., 2 пр.

 

Ti2MnAl - спин-поляризованный бесщелевой полупроводник, перспективный материал для спинтроники.

Известен способ [Wuwei Feng, Xiao Fu, Caihua Wan, Zhonghui Yuan, Xiufeng Han, Nguyen Van Quang, Sungiae Cho. Spin gapless semiconductor like Ti2MnAl film as a new candidate for spintronics application. Phys. Status Solidi RRL 9, No. 11, 641-645 (2015)]-прототип, в котором Ti2MnAl получают путем магнетронного распыления мишени из элементарных Ti, Mn и Al. Основной недостаток способа-прототипа состоит в том, что он позволяет получать только тонкие пленки Ti2MnAl, а для ряда предполагаемых применений требуется объемный материал.

Задачей данного изобретения является получение Ti2MnAl в виде объемных слитков.

Эта задача решается в предлагаемом способе получения Ti2MnAl из элементарных Ti, Mn и Al за счет того, что навески марганца и алюминия помещают в капсулу из титана, закрывают крышкой из титана, а затем подвергают плавке во взвешенном состоянии с использованием высокочастотного индукционного нагрева, причем плавка производится в атмосфере инертного газа при температуре 1700-1730 градусов Цельсия в течение 15-20 минут, а последующая кристаллизация расплава осуществляется путем закалки до комнатной температуры.

Предлагаемым способом получены объемные слитки Ti2MnAl. На Фиг. 1 показано электронномикроскопическое изображение скола слитка, на поверхности которого в 10 точках был проведен микрорентгеноспектральный анализ, подтвердивший соответствие состава слитка заданному (Ti2MnAl). Образцы из полученных слитков демонстрируют характерную для Ti2MnAl зависимость магнитосопротивления от приложенного поля при температуре 15 К (Фиг. 2), что также подтверждает однородность состава слитков.

Параметры процесса выбраны экспериментально. При температуре ниже 1700 градусов Цельсия не происходит полного взаимного растворения компонентов сплава. Это, вероятно, обусловлено образованием тугоплавких промежуточных соединений, в том числе таких, которые остаются в равновесии с жидкой фазой вплоть до температуры плавления титана, являющегося наиболее тугоплавким компонентом в Ti2MnAl. (Температура плавления титана, по разным данным, составляет от 1668 до 1671 град. Цельсия). Увеличение температуры плавки свыше 1730 град. Цельсия не дает дальнейшего положительного эффекта.

При продолжительности плавки менее 15 минут не происходит полной гомогенизации расплава и состав полученных слитков не является однородным. Увеличение продолжительности свыше 20 минут не дает дальнейшего положительного эффекта.

Пример 1.

В капсулу из титана с крышкой из титана помещают навески марганца и алюминия. Масса титановой капсулы вместе с крышкой и массы навесок Mn и Al имеют соотношение, стехиометрическое для состава Ti2MnAl. Капсулу закрывают крышкой. Плавку проводят в атмосфере аргона. Для проведения процесса используют индукционную печь для плавки во взвешенном состоянии. Температура плавки 1700 град. Цельсия. Продолжительность плавки 20 минут. По окончании плавки индуктор печи отключают, левитация расплава прекращается, полученный материал падает на водоохлаждаемую медную подложку, поверхность которой имеет комнатную температуру. Получен объемный слиток Ti2MnAl, имеющий однородный состав по данным микрорентгеноспектрального анализа. На Фиг. 3 показан полученный слиток, расколотый для подготовки образцов для проведения микрорентгеноспектрального анализа.

Пример 2.

В капсулу из титана с крышкой из титана помещают навески марганца и алюминия. Масса титановой капсулы вместе с крышкой и массы навесок Mn и Al имеют соотношение, стехиометрическое для состава Ti2MnAl. Капсулу закрывают крышкой. Плавку проводят в атмосфере аргона. Для проведения процесса используют индукционную печь для плавки во взвешенном состоянии. Температура плавки 1730 град. Цельсия. Продолжительность плавки 15 минут. По окончании плавки индуктор печи отключают, левитация расплава прекращается, полученный материал падает на водоохлаждаемую медную подложку, поверхность которой имеет комнатную температуру. Получен объемный слиток Ti2MnAl, имеющий однородный состав по данным микрорентгеноспектрального анализа. На Фиг. 1 показан скол этого слитка, на поверхности скола в 10 точках был проведен микрорентгеноспектральный анализ. На Фиг. 2 показана зависимость магнитосопротивления от приложенного поля (при температуре 15 К), также подтверждающая однородность состава слитка.

Способ получения Ti2MnAl из элементарных титана, марганца и алюминия, отличающийся тем, что навески марганца и алюминия помещают в капсулу из титана, закрывают крышкой из титана, а затем подвергают плавке во взвешенном состоянии с использованием высокочастотного индукционного нагрева, причем плавку производят в атмосфере инертного газа при температуре 1700-1730°С в течение 15-20 минут, а последующую кристаллизацию расплава осуществляют путем закалки до комнатной температуры.



 

Похожие патенты:

Настоящее изобретение в целом относится к области металлургии, в частности к материалам из титанового сплава с заданными механическими свойствами для изготовления крепежных изделий авиационной техники.

Изобретение относится к титановому композиционному материалу, который может быть использован, например, на электростанциях для охлаждаемых морской водой конденсаторов, в теплообменниках для установок опреснения морской воды, в реакторах химических заводов, холодильниках.

Изобретение относится к металлургии, а именно к титановому сплаву с высокой прочностью, который может быть использован для изготовления биосовместимых имплантатов.

Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления конструкций судостроительной, авиационной и космической техники, а также энергетических установок.

Изобретение может быть использовано в производстве присадочных материалов для дуговой сварки в среде инертных газов высокопрочных (α+β) и псевдо-β-титановых сплавов, предназначенных для использования в качестве конструкционного высокопрочного высокотехнологичного материала.

Изобретение относится к области металлургии, а именно к изготовлению прокатного изделия из никель-титанового сплава. Способ изготовления никель-титанового изделия термомеханической обработкой включает холодную обработку заготовки из никель-титанового сплава при температуре менее 500°C и горячее изостатическое прессование подвергнутой холодной обработке заготовки из никель-титанового сплава, при этом заготовка из никель-титанового сплава содержит по меньшей мере 35 процентов по массе титана и по меньшей мере 45 процентов по массе никеля.
Изобретение относится к металлургии, а именно к листу титанового сплава для электрода, используемого в качестве основного материала для электрода в электролитической ячейке при электролизе.

Изобретение относится к металлургии, а именно к биосовместимым сплавам с механическим поведением, близким к поведению костной ткани человека, и может быть использован для несущих конструкций медицинских внутрикостных имплантатов.

Изобретение относится к области металлургии, в частности к титановым сплавам, которые могут быть использованы для изготовления деталей, испытывающих ударные нагрузки.

Изобретение относится к получению титанового сплава Ti-Al. Исходную смесь, содержащую алюминий, возможно, AlCl3 и, возможно, один или более галогенидов легирующего элемента, нагревают до температуры предварительного нагрева, затем вводят в исходную смесь TiCl4 при первой температуре реакции для восстановления по существу всего Ti4+ в TiCl4 до Ti3+, затем производят нагрев до второй температуры реакции для восстановления по существу всего Ti3+ до Ti2+ с получением промежуточной смеси, которая содержит соль Ti2+, и вводят промежуточную смесь в реакционную камеру при температуре реакции диспропорционирования с получением из Ti2+ титанового сплава посредством реакции диспропорционирования.

Изобретение относится к порошковой металлургии, в частности к получению твердых сплавов. Твердый сплав содержит зерна твердого материала со средним размером 1-1000 нм и гетерогенно распределенный связующий металл в виде островков со средним размером 0,1-10 мкм при среднем расстоянии между островками 1,0-7,0 мкм.
Наверх