Цифровой интегральный регулятор



Цифровой интегральный регулятор
Цифровой интегральный регулятор
H02P23/04 - Управление или регулирование электрических двигателей, генераторов, электромашинных преобразователей; управление трансформаторами, реакторами или дроссельными катушками (конструкции пусковых аппаратов, тормозов или других управляющих устройств см. в соответствующих подклассах, например механические тормоза F16D, механические регуляторы скорости G05D; переменные резисторы H01C; пусковые переключатели H01H; системы для регулирования электрических или магнитных переменных величин с использованием трансформаторов, реакторов или дроссельных катушек G05F; устройства, конструктивно связанные с электрическими двигателями, генераторами, электромашинными преобразователями, трансформаторами, реакторами или дроссельными катушками, см. в соответствующих подклассах, например H01F,H02K; соединение или управление

Владельцы патента RU 2725410:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный технический университет" (RU)

Изобретение относится к автоматическим регуляторам. Цифровой интегральный регулятор содержит шесть сумматоров, шесть регистров, элемент ИЛИ, элемент И-НЕ, три элемента И, генератор прямоугольных импульсов и пять одновибраторов. Причем первый и второй входы первого сумматора являются соответственно входами сигналов задания и обратной связи регулятора. Первый и второй входы первого элемента И являются входами готовности соответственно сигналов задания и обратной связи. Второй вход третьего сумматора является входом допустимого приращения плавающего ограничения, второй вход четвертого сумматора является входом инверсного значения допустимого приращения плавающего ограничения. Выход четвертого одновибратора является выходом готовности информации на выходе регулятора, а выход второго регистра - выходом регулятора. Технический результат заключается в обеспечении устойчивой работы следящего электропривода во всех диапазонах изменения перемещений и скоростей. 1 ил.

 

Изобретение относится к элементам систем автоматического регулирования с цифровым управлением и может найти применение в системах регулирования частоты вращения двигателей и положения различных механизмов.

Наиболее близким по технической сущности является цифровой интегральный регулятор (см. патент России №2325681, опубл. 27.05.2008, бюл. №15), содержащий четыре сумматора, три регистра, мультиплексор, блок логики, блок умножения, генератор прямоугольных импульсов, блок синхронизации и блок ограничения.

Недостатком наиболее близкого цифрового интегрального регулятора является то, что в случае его применения во внешнем контуре следящего электропривода даже при правильном выборе постоянной времени интегрирования при больших диапазонах изменения перемещений и скоростей возможно возникновение неустойчивости электропривода.

Технический результат достигается тем, что в цифровой интегральный регулятор, содержащий первый, второй, третий и четвертый сумматоры, первый, второй и третий регистры, элемент ИЛИ, элемент И-НЕ, первый элемент И, генератор прямоугольных импульсов, первый, второй, третий, четвертый и пятый одновибраторы, причем выход первого сумматора соединен с первым входом первого регистра, выход которого соединен с первым входом второго сумматора, выход второго регистра соединен с вторым входом второго сумматора, выход третьего сумматора соединен с первым входом третьего регистра, старший разряд выхода первого регистра соединен с первыми входами элемента ИЛИ и элемента И-НЕ, выход элемента И соединен с первым входом первого одновибратора, выход которого соединен с вторыми входами первого и третьего регистров, выход генератора прямоугольных импульсов соединен с первым входом второго одновибратора, выход которого соединен с вторым входом первого одновибратора и входом третьего одновибратора, выход третьего одновибратора соединен с первым входом второго регистра и входом четвертого одновибратора, причем первый и второй входы первого сумматора являются соответственно входами сигналов задания и обратной связи регулятора, первый и второй входы первого элемента И являются входами готовности соответственно сигналов задания и обратной связи, а выход второго регистра - выходом регулятора, дополнительно введены пятый и шестой сумматоры, четвертый, пятый и шестой регистры и второй и третий элементы И, причем первый вход первого сумматора соединен с первыми входами третьего и четвертого сумматоров, выход четвертого сумматора соединен с первым входом четвертого регистра, выход второго сумматора соединен с вторым входом второго регистра, выход которого соединен с первыми входами пятого и шестого сумматоров, выход первого одновибртора соединен с вторым входом четвертого регистра и входом пятого одновибратора, выход которого соединен с первым входом второго элемента И, выход третьего регистра соединен с вторым входом пятого сумматора, выход которого соединен с первым входом пятого регистра, старший разряд выхода пятого регистра соединен с вторами входами элемента ИЛИ и элемента И-НЕ, выход четвертого регистра соединен с вторым входом шестого сумматора, выход которого соединен с первым входом шестого регистра, старший разряд выхода шестого регистра соединен с третьими входами элемента ИЛИ и элемента И-НЕ, выход четвертого одновибратора соединен с вторым входом второго элемента И, выход которого соединен с вторыми входами пятого и шестого регистров, выход элемента ИЛИ соединен с первым входом третьего элемента И, выход которого соединен с вторым входом второго одновибратора, выход элемента И-НЕ соединен с вторым входом третьего элемента И, причем второй вход третьего сумматора является входом допустимого приращения плавающего ограничения, второй вход четвертого сумматора является входом инверсного значения допустимого приращения плавающего ограничения, а выход четвертого одновибратора является выходом готовности информации на выходе регулятора.

Существенные отличия находят свое выражение в новой совокупности связей между элементами устройства. Указанная совокупность связей позволяет цифровому интегральному регулятору обеспечить устойчивую работу следящего электропривода во всех диапазонах изменения перемещений и скоростей.

На фиг. 1 представлена функциональная схема цифрового интегрального регулятора.

Цифровой интегральный регулятор (фиг. 1) содержит сумматоры 1, 2, 3, 4, 5 и 6, регистры 7, 8, 9, 10, 11 и 12, элемент ИЛИ 13, элемент И-НЕ 14, элементы И 15, 16 и 17, генератор 18 прямоугольных импульсов, одновибраторы 19, 20, 21, 22 и 23, вход 24 сигнала задания, вход 25 сигнала обратной связи, вход 26 допустимого приращения плавающего ограничения, вход 27 инверсного значения допустимого приращения плавающего ограничения, вход 28 готовности сигнала задания, вход 29 готовности сигнала обратной связи, выход 30 регулятора, выход 31 готовности информации на выходе регулятора.

Выход сумматора 1 соединен с первым входом регистра 7, выход которого соединен с первым входом сумматора 2. Выход регистра 8 соединен с вторым входом сумматора 2. Выход сумматора 3 соединен с первым входом регистра 9. Старший разряд выхода регистра 7 соединен с первыми входами элемента ИЛИ 13 и элемента И-НЕ 14. Выход элемента И 15 соединен с первым входом одновибратора 19, выход которого соединен с вторыми входами регистров 7 и 9. Выход генератора 18 прямоугольных импульсов соединен с первым входом одновибратора 20, выход которого соединен с вторым входом одновибратора 19 и входом третьего одновибратора 21. Выход (инверсный) одновибратора 21 соединен с первым входом регистра 8 и входом одновибратора 22. Первый и второй входы сумматора 1 являются соответственно входами 24 и 25 сигналов задания и обратной связи регулятора. Первый и второй входы элемента И 15 являются входами 28 и 29 готовности соответственно сигналов задания и обратной связи. Выход регистра 8 является выходом 30 регулятора. Первый вход сумматора 1 соединен с первыми входами сумматоров 3 и 4. Выход сумматора 4 соединен с первым входом регистра 10. Выход сумматора 2 соединен с вторым входом регистра 8, выход которого соединен с первыми входами сумматоров 5 и 6. Выход одновибртора 19 соединен с вторым входом регистра 10 и входом одновибратора 23, выход (инверсный) которого соединен с первым входом элемента И 16. Выход (инверсный) регистра 9 соединен с вторым входом сумматора 5, выход которого соединен с первым входом регистра 11. Старший разряд выхода регистра 11 соединен с вторами входами элемента ИЛИ 13 и элемента И-НЕ 14. Выход (инверсный) регистра 10 соединен с вторым входом сумматора 6, выход которого соединен с первым входом регистра 12. Старший разряд выхода регистра 12 соединен с третьими входами элемента ИЛИ 13 и элемента И-НЕ 14. Выход (инверсный) одновибратора 22 соединен с вторым входом элемента И 16, выход которого соединен с вторыми входами регистров 11 и 12. Выход элемента ИЛИ 13 соединен с первым входом элемента И 17, выход которого соединен с вторым входом одновибратора 20. Выход элемента И-НЕ 14 соединен с вторым входом элемента И 17. Второй вход сумматора 3 является входом 26 допустимого приращения плавающего ограничения. Второй вход сумматора 4 является входом 27 инверсного значения допустимого приращения плавающего ограничения. Выход одновибратора 22 является выходом 31 готовности информации на выходе регулятора.

Основные элементы цифрового регулятора могут быть выполнены, например, на следующих микросхемах: сумматоры 1, 2, 3, 4, 5 и 6 - К555ИМ6; регистры 7, 8, 9, 10, 11 и 12 - К555ТМ8; элемент ИЛИ 13 - К555ЛЛ1; элемент И-НЕ 14 - К555ЛА4; элементы И 15, 16 и 17 - К555ЛИ1; одновибраторы 19, 20, 21, 22 и 23 - К555АГ3.

Генератор 18 прямоугольных импульсов, например, представляет собой автогенератор, выполненный на микросхеме К555ЛА3 с кварцевой стабилизацией, причем выход автогенератора подключен к входу делителя частоты, реализованного на двоичных счетчиках, например, К555ИЕ7.

Следует также отметить, что основные элементы цифрового интегрального регулятора могут быть также выполнены программно на микроконтроллере.

Цифровой интегральный регулятор работает следующим образом. Цифровые коды, соответствующие сигналу задания и обратной связи подаются соответственно на входы 24 и 25 цифрового интегрального регулятора. Сумматор 1 вычисляет разность Nз-Noc между сигналами задания Nз и обратной связи Noc. Сумматор 3 вычисляет сумму Nз+ΔNогр сигнала задания Nз и допустимого приращения плавающего ограничения ΔNогр. Сумматор 4 находит разность Nз-ΔNогр. По приходу импульса на вход 28 готовности сигнала задания или на вход 29 готовности сигнала обратной связи запускается одновибратор 19, импульс которого подается на вторые входы (входы стробирования) регистров 7, 9 и 10. В результате разность Nз-Noc записывается в регистр 7, сумма Nз+ΔNогр записывается в регистр 9, а разность Nз-ΔNогр - в регистр 10. Сумматор 2 в совокупности с регистром 8 формируют интегральный закон регулирования, причем величина постоянной времени интегрирования Ти определяется периодом генератора 18 прямоугольных импульсов и сдвигом разрядов сумматора 2 и регистра 8 относительно выходного сигнала регулятора Nи на выходе 30. Генератор 18 прямоугольных импульсов подает сигнал на одновибратор 20, который формирует имульс, запускающий одновибратор 21 и блокирующий одновибратор 19. Это обеспечивает корректную запись выходной величины Nи регулятора в регистр 8 по приходу импульса с выхода одновибратора 21. Этот же импульс запускает одновибратор 22, который формирет на выходе 31 сигнал готовности информации на выходе 30 регулятора.

Сумматор 5 и находит разность между выходными сигналами регистров 8 и 9, то есть вычисляет величину Nи-Nз-ΔNогр. Эта величина записывается в регистр 11 при появлении импульсов на выходах одновибраторов 22 и 23, которые проходят элемент И 16. Следует отметить, что одновибратор 23 запускается при появлении импульса на выходе одновибратора 19. Сумматор 6 вычисляет величину Nи-Nз+ΔNогр, то есть разность между сигналами на выходе регистров 8 и 10. Эта разность записывается в регистр 12 при появлении импульсов на выходах одновибраторов 22 и 23.

Логические элементы ИЛИ 13, И-НЕ 14 и И 17 определяют когда выходной сигнал Nи интегрального регулятора выйдет за пределы Nз±ΔNогр. При выполнении условий Nи>Nз+ΔNогр или Nи<Nз-ΔNогр выходной сигнал элемента И 17 заблокирует одновибратор 20. Поэтому импульсы на выходе одновибратора 21 перестанут появляться и изменения выходного сигнала Nи на выходе регистра 8 не будет происходить до тех пор, пока не сменится знак рассогласования, взятый со старшего разряда регистра 7. В результате сигнал Nи на выходе 30 цифрового интегрального регулятора всегда будет принимать значения Nз-ΔNогр-ΔN<Nи<Nз+ΔNогр+ΔN, где ΔN - некоторая величина погрешности ограничения, вызванная дискретностью процессов, протекающих в цифровом устройстве. В случае применения цифрового интегрального регулятора во внешнем контуре следящего электропривода правильный выбор величин допустимого приращения плавающего ограничения ΔNогр и постоянной времени интегрирования Ти обеспечивает устойчивость следящего электропривода во всех диапазонах изменения перемещений и скоростей.

Таким образом, применение предлагаемого цифрового интегрального регулятора позволяет обеспечить устойчивую работу следящего электропривода во всех диапазонах изменения перемещений и скоростей.

Цифровой интегральный регулятор, содержащий первый, второй, третий и четвертый сумматоры, первый, второй и третий регистры, элемент ИЛИ, элемент И-НЕ, первый элемент И, генератор прямоугольных импульсов, первый, второй, третий, четвертый и пятый одновибраторы, причем выход первого сумматора соединен с первым входом первого регистра, выход которого соединен с первым входом второго сумматора, выход второго регистра соединен с вторым входом второго сумматора, выход третьего сумматора соединен с первым входом третьего регистра, старший разряд выхода первого регистра соединен с первыми входами элемента ИЛИ и элемента И-НЕ, выход элемента И соединен с первым входом первого одновибратора, выход которого соединен с вторыми входами первого и третьего регистров, выход генератора прямоугольных импульсов соединен с первым входом второго одновибратора, выход которого соединен с вторым входом первого одновибратора и входом третьего одновибратора, выход третьего одновибратора соединен с первым входом второго регистра и входом четвертого одновибратора, причем первый и второй входы первого сумматора являются соответственно входами сигналов задания и обратной связи регулятора, первый и второй входы первого элемента И являются входами готовности соответственно сигналов задания и обратной связи, а выход второго регистра - выходом регулятора, отличающийся тем, что в него дополнительно введены пятый и шестой сумматоры, четвертый, пятый и шестой регистры и второй и третий элементы И, причем первый вход первого сумматора соединен с первыми входами третьего и четвертого сумматоров, выход четвертого сумматора соединен с первым входом четвертого регистра, выход второго сумматора соединен с вторым входом второго регистра, выход которого соединен с первыми входами пятого и шестого сумматоров, выход первого одновибратора соединен с вторым входом четвертого регистра и входом пятого одновибратора, выход которого соединен с первым входом второго элемента И, выход третьего регистра соединен с вторым входом пятого сумматора, выход которого соединен с первым входом пятого регистра, старший разряд выхода пятого регистра соединен с вторыми входами элемента ИЛИ и элемента И-НЕ, выход четвертого регистра соединен с вторым входом шестого сумматора, выход которого соединен с первым входом шестого регистра, старший разряд выхода шестого регистра соединен с третьими входами элемента ИЛИ и элемента И-НЕ, выход четвертого одновибратора соединен с вторым входом второго элемента И, выход которого соединен с вторыми входами пятого и шестого регистров, выход элемента ИЛИ соединен с первым входом третьего элемента И, выход которого соединен с вторым входом второго одновибратора, выход элемента И-НЕ соединен с вторым входом третьего элемента И, причем второй вход третьего сумматора является входом допустимого приращения плавающего ограничения, второй вход четвертого сумматора является входом инверсного значения допустимого приращения плавающего ограничения, а выход четвертого одновибратора является выходом готовности информации на выходе регулятора.



 

Похожие патенты:

Изобретение относится к электротехнике. Технический результат - снижение потребления реактивной мощности, уменьшение высших гармонических составляющих, вносимых в сеть, обеспечение возможности повышения выходного напряжения инвертора выше напряжения сети.

Изобретение относится к области электротехники и может быть использовано в системах частотного регулирования скорости синхронных двигателей, питаемых от автономного инвертора напряжения, в режиме бездатчикового управления.

Изобретение относится к области электротехники. Техническим результатом является минимизация времени протекания переходных электромагнитных процессов в асинхронном двигателе при минимальных потерях в меди.

Изобретение относится к электрическим тяговым системам транспортных средств. Электродвижительный комплекс транспортного средства с каскадным электрическим преобразователем содержит систему управления, первичные тепловые двигатели с генераторами переменного тока, автоматические выключатели, электрический преобразователь и тяговый электродвигатель.

Изобретение относится к электротехнике. Технический результат заключается в повышении скорости формирования электромагнитного момента при изменении управляющего сигнала задания момента.

Изобретение относится к электрическим тяговым системам транспортных средств. Электродвижительная установка судна с несколькими гребными винтами содержит систему управления, генераторный агрегат, автоматические выключатели, выпрямители напряжения, инверторы напряжения и тяговые электродвигатели, механически соединенные каждый со своим гребным винтом.

Изобретение относится к электрическим тяговым системам транспортных средств. Электродвижительная установка транспортного средства с каскадным электрическим преобразователем содержит систему управления, первичные тепловые двигатели с генераторами переменного тока, автоматические выключатели, электрический преобразователь и тяговый электродвигатель.

Изобретение относится к области электротехники и может быть использовано в системах управления шаговыми двигателями, в частности в системах управления биполярными шаговыми двигателями.

Изобретение относится к электрическим тяговым системам транспортных средств. Электродвижительная установка транспортного средства содержит систему управления, источник постоянного напряжения, трехфазный инвертор напряжения, собранный на транзисторных полумостах и конденсаторах, тяговый электродвигатель переменного тока, параллельный накопитель электрической энергии и согласующий электрический преобразователь.

Группа изобретений относится к системе аккумулирования энергии и способу управления ею. Система состоит из: силовой части, средств оценки состояний силовой части и средств управления, оснащенных информационным интерфейсом.

Изобретение относится к двигателям внутреннего сгорания. Система управления двигателем внутреннего сгорания содержит электронный модуль управления, включающий в себя контроллер с обратной связью и эталонный регулятор.
Наверх