Система микрокалориметра и цилиндра фарадея с комплексным приемником излучения

Изобретение относится к комплексным приборам одновременного измерения различных характеристик заданного типа излучения, в частности к приборам одновременного измерения заряда и энергии принимаемого излучения. Технический результат - возможность определения полного заряда одновременно с полной энергией за заданный интервал времени для корпускулярного типа излучения. Система микрокалориметра и цилиндра Фарадея с комплексным приемником излучения содержит приемник излучения, блок термопар, блок калориметрических измерений, блок зарядовых измерений. Приемник излучения выполнен в виде двух элементов, каждый из которых подключен последовательно через конденсаторный блок на заземляющий электрод, а блок зарядовых измерений выполнен в виде двух гальванометров так, что параллельно каждому конденсаторному блоку подключен гальванометр, при этом контактные провода к каждому из конденсаторных блоков подаются через вакуумированный разъем. Блок термопар выполнен в первом вакуумированном корпусе так, что термопары состоят в теплопроводном контакте с внутренней поверхностью второго элемента приемника излучения, при этом контактные провода с термопар подаются на измерительный блок калориметрических измерений через вакуумированный разъем. Внешняя поверхность второго элемента приемника излучения выполнена во втором вакуумированном корпусе, к отверстию которого прикреплен стыковочный элемент, прозрачный для измеряемого излучения, который представляет собой трубчатый элемент для вакуумированного соединения с источником излучения, а первый элемент приемника излучения, выполненный в виде диафрагмы, расположен между стыковочным элементом, прозрачным для измеряемого излучения, и вторым элементом приемника излучения. 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к комплексным приборам одновременного измерения различных характеристик заданного типа излучения, в частности к приборам одновременного измерения заряда и энергии принимаемого излучения.

Известен микрокалориметр (патент РФ №181370), содержащий: приемник излучения, блок термопар, блок измерения, при этом блок термопар выполнен в первом вакуумированном корпусе так, что термопары состоят в теплопроводном контакте с внутренней поверхностью приемника излучения, при этом контактные провода с термопар подаются на измерительный блок через вакуумированный разъем, внешняя поверхность приемника излучения выполнена во втором вакуумированном корпусе с окном, прозрачным для измеряемого излучения, поверхность приемника излучения выполнена в виде двух конусов, направленных основаниями друг к другу так, что один из конусов в своей вершине содержит отверстие для приема излучения.

Недостатком данного решения является невозможность определения заряда одновременно с измерением энергии корпускулярного излучения

Технической задачей заявляемого решения является: определение зарядовых характеристик одновременно с энергетическими для корпускулярного типа излучения.

Техническим результатом заявляемого решения является: определение полного заряда одновременно с полной энергией за заданный интервал времени для корпускулярного типа излучения.

Указанный технический результат достигается тем, что предложена система микрокалориметра и цилиндра Фарадея с комплексным приемником излучения содержащая: приемник излучения, блок термопар, блок калориметрических измерений, блок зарядовых измерений, согласно решения, приемник излучения выполнен в виде двух элементов, каждый из которых подключен последовательно через конденсаторный блок на заземляющий электрод, а блок зарядовых измерений выполнен в виде двух гальванометров так, что параллельно каждому конденсаторному блоку подключен гальванометр, при этом контактные провода к каждому из конденсаторных блоков подаются через вакуумированный разъем, блок термопар, выполнен в первом вакуумированном корпусе, так что термопары состоят в теплопроводном контакте с внутренней поверхностью второго элемента приемника излучения, при этом контактные провода с термопар подаются на измерительный блок калориметрических измерений через вакуумированный разъем, внешняя поверхность второго элемента приемника излучения выполнена во втором вакуумированном корпусе к отверстию которого прикреплен стыковочный элемент, прозрачный для измеряемого излучения, стыковочный элемент, прозрачный для измеряемого излучения представляет собой трубчатый элемент для вакуумированного соединения с источником излучения, а первый элемент приемника излучения, выполненный в виде диафрагмы расположен между стыковочным элементом, прозрачным для измеряемого излучения и вторым элементом приемником излучения,

Возможность измерения заряда обеспечивается тем, что несфокусированный поток корпускулярного излучения (доля которого пренебрежимо мала) падает на поверхность первого токопроводящего элемента приемника излучения, и его заряд измеряются с помощью первого гальванометра, а сфокусированный поток корпускулярного излучения падает на конусообразную поверхность второго токопроводящего элемента приемника излучения где происходит многократное переотражение так, что излучение многократно отражаясь практически не выходит обратно из приемника излучения и его заряд измеряется вторым гальванометром, при этом обеспечивается возможность измерения энергии, поскольку основная часть корпускулярного излучения отдает не только заряд, но и энергию нагревая стенки второго токопроводящего элемента на котором расположена система термопар сигналы с которых поступают на блок калориметрических измерений.

На фиг. 1. представлена система микрокалориметра и цилиндра Фарадея с комплексным приемником изучения.

Система микрокалориметра и цилиндра Фарадея с комплексным приемником изучения содержит: общий корпус - 1, приемник излучения выполненный в виде двух токопроводящих элементов - 2, каждый из которых подключен последовательно через конденсаторный блок - 3 на заземляющий электрод - 4, а блок зарядовых измерений 5 выполнен в виде двух гальванометров - 6 так, что параллельно каждому конденсаторному блоку подключен гальванометр, при этом контактные провода к каждому из конденсаторных блоков подаются через вакуумированный разъем - 7, блок термопар - 8 выполнен в первом вакуумированном корпусе - 9, так что термопары состоят в теплопроводном контакте с внутренней поверхностью второго элемента приемника излучения - 10, при этом контактные провода с термопар - 11 подаются на измерительный блок калориметрических измерений - 12 через вакуумированный разъем, внешняя поверхность второго элемента приемника излучения - 13 выполнена во втором вакуумированном корпусе - 14 со стыковочным элементом, прозрачным для измеряемого излучения - 15, при этом первый элемент приемника излучения выполненный в виде диафрагмы расположен между стыковочным элементом, прозрачным для измеряемого излучения и вторым элементом приемником излучения.

Устройство работает следующим образом: с помощью стыковочного переходного элемента, прозрачного для измеряемого излучения заявляемая система соединяется с источником излучения, после этого весь объем системы откачивается до давления Р=10-6÷10-7 Па. Затем источником излучения генерируется заданный тип излучения, который измеряется заявляемой системой.

В таблице 1. представлены результаты использования системы микрокалориметра и цилиндра Фарадея с комплексным приемником изучения, выполненной по заявленному решению, примененной для измерения энергетических характеристик пучка электронов в измерителе калориметрическом ИКТ-1Н - относительная погрешность составила не более 0,1% и для измерения зарядовых характеристик пучка электронов баллистическим гальванометром M195 относительная погрешность составила не более 0,2%

Пример 1.

Предварительно с помощью стыковочного переходного элемента, прозрачного для измеряемого излучения - заявляемая система соединяется с источником излучения электронов - генератором импульсных напряжений ГИН 600, затем внутренний объем системы микрокалориметра и цилиндра Фарадея с комплексным приемником изучения откачивается до значении давления Р=10-6÷10-7 Па., после этого генератор импульсных напряжений ГИН-600 излучает электроны энергия которых в импульсе составляет в среднем 1 дж при количестве электронов 1,6*1019 Кл. Измерения одного импульсного потока электронов производятся следующим образом: несфокусированная часть потока электронов попадает на первый элемент приемника излучения и затем накапливается на первом конденсаторном блоке, который разряжается при включении первого баллистического гальванометра М195, показывая их количество равное 0,01*1019 Кл, сфокусированная часть потока электронов проходя через диафрагму первого элемента приемника излучения падает на внутреннюю конусообразную поверхность второго элемента приемника изучения и накапливается на втором конденсаторном блоке, который разряжается при включении второго баллистического гальванометра M195, показывая их количество равное 1,59*1019 Кл, при этом - от протекания этой основной части потока электронов по второму элементу приемника излучения к конденсатору нагревается поверхность второго элемента, что фиксируется системой термопар контактные провода с которых подаются на измерительный блок калориметричеких измерений ИКТ-1Н, который регистрирует нагрев на 1 Дж.

Таким образом, решена поставленная техническая задача заявляемого решения: - определение полного заряда одновременно с полной энергией за заданный интервал времени для заданного типа излучения, с помощью двухэлементного комплексного приемника излучения.

1. Система микрокалориметра и цилиндра Фарадея с комплексным приемником излучения, содержащая: приемник излучения, блок термопар, блок калориметрических измерений, блок зарядовых измерений, отличающаяся тем, что приемник излучения выполнен в виде двух элементов, каждый из которых подключен последовательно через конденсаторный блок на заземляющий электрод, а блок зарядовых измерений выполнен в виде двух гальванометров так, что параллельно каждому конденсаторному блоку подключен гальванометр, при этом контактные провода к каждому из конденсаторных блоков подаются через вакуумированный разъем, блок термопар выполнен в первом вакуумированном корпусе так, что термопары состоят в теплопроводном контакте с внутренней поверхностью второго элемента приемника излучения, при этом контактные провода с термопар подаются на измерительный блок калориметрических измерений через вакуумированный разъем, внешняя поверхность второго элемента приемника излучения расположена во втором вакуумированном корпусе, к отверстию которого прикреплен стыковочный элемент, прозрачный для измеряемого излучения.

2. Система микрокалориметра и цилиндра Фарадея с комплексным приемником излучения по п. 1, отличающаяся тем, что стыковочный элемент, прозрачный для измеряемого излучения, представляет собой трубчатый элемент для вакуумированного соединения с источником излучения, а первый элемент приемника излучения, выполненный в виде диафрагмы, расположен между стыковочным элементом, прозрачным для измеряемого излучения, и вторым элементом приемника излучения.



 

Похожие патенты:

Изобретение относится способу охлаждения ионов. Способ осуществляется на основе ионной ловушки с возможностью динамического изменения глубины потенциальной ямы.

Устройство 1 описано для контроля газового потока, содержащее регулирующий интерфейс 2 для регулирования газового потока, выполненный с возможностью сдерживания или пропускания потока газа через устройство 1 управляемым способом, а также средства контроля 3, 4 регулирующего интерфейса.

Изобретение относится к области масс-спектрометрии. Ионный фильтр для масс-спектрометра включает модификатор ионов; селектор ионов, сконфигурированный для выбора подмножества из пробы ионов на основе их подвижности в газообразной среде; и контроллер, сконфигурированный для обеспечения функционирования модификатора ионов в первом режиме для модификации ионов, выбранных селектором ионов, в результате чего получают дочерние ионы, а также сконфигурированный для обеспечения функционирования модификатора ионов во втором режиме для вывода ионов, выбранных селектором ионов; при этом ионный фильтр выполнен с возможностью обеспечения вывода ионов из модификатора ионов на впуск масс-спектрометра.

Изобретение относится к области спектрометрии заряженных частиц и может быть использовано для измерения энергетического спектра импульсно-периодических и непрерывных пучков заряженных частиц.

Изобретение относится к способам ионного обмена, а также к способу и системе для обнаружения нитратов, и предназначено для десорбции нитрат-ионов из образца в течение ионного обмена с образованием анализируемого иона нитрат-допирующая добавка, который можно зарегистрировать с помощью прибора для спектрометрического анализа.

Изобретение относится к оценке безопасности пищевой продукции, а именно к методу количественного определения содержания окадаиковой кислоты (диарейного токсина моллюсков) в морепродуктах методом ВЭЖХ-МС с использованием жидкостного хроматографа Agilent 1200 HPLC System и масс-спектрометра высокого разрешения Thermo Scientific Orbitrap Elite.

Изобретение относится к области спектрометрии и может быть использовано для анализа аэрозолей. Предложены портативное спектрометрическое устройство (1) подвижности ионов для обнаружения аэрозоля и способ использования устройства.

Изобретение относится к области масс-спектрометрии, преимущественно для космических исследований и для применения в других областях при условиях жестких ограничений массы и габаритов.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п.

Изобретение относится к способу структурно-химического анализа примесных соединений в растворах или газах. В способе предусмотрена экстракция ионов или их образование из раствора или газа, поступающего внутрь радиочастотной линейной ловушки газодинамического интерфейса через капилляр микронного размера.

Устройство обнаружения радиоактивного излучения, включающее ионизационную камеру, содержащую катод и анод. Ионизационная камера регистрирует проходящее в нее излучение.
Наверх