Способ получения средневязких белых масел



Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел
Способ получения средневязких белых масел

Владельцы патента RU 2726619:

Общество с ограниченной ответственностью "ЛЛК-Интернешнл" (ООО "ЛЛК-Интернешнл") (RU)
Общество с ограниченной ответственностью "ЛУКОЙЛ-Волгограднефтепереработка" (ООО "ЛУКОЙЛ-Волгограднефтепереработка") (RU)

Изобретение относится к способу получения белых масел, соответствующих по содержанию ароматических углеводородов требованиям, предъявляемым к медицинским и техническим белым маслам, и может быть применено в нефтеперерабатывающей промышленности для производства белых масел из непревращенного остатка гидрокрекинга. Процесс каталитического гидрокрекинга проводят при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 и конверсии не ниже 75%. Полученный непревращенный остаток гидрокрекинга, содержащий не менее 90 мас.% насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30 мас.%, подвергается последовательно: селективной очистке растворителями, далее самостоятельно или в смеси с парафиновым гачем, полученным в процессе сольвентной депарафинизации из рафината непревращенного остатка гидрокрекинга, подвергается последовательно гидроочистке, каталитической депарафинизации, гидрофинишингу, ректификации и вакуумной дистилляции с одновременным выделением двух целевых фракций с кинематической вязкостью при +40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с и содержанием ароматических углеводородов не более 0,5%, при давлении ведения гидропроцессов менее 6,0 МПа. 1 з.п. ф-лы, 12 табл., 2 пр.

 

Изобретение относится к способу получения средневязких белых масел и может быть применено в нефтеперерабатывающей промышленности для получения средневязких белых масел из непревращенного остатка гидрокрекинга, с использованием процессов селективной очистки растворителями, каталитической гидроочистки, каталитической депарафинизации (гидроизомеризации), гидрофинишинга, ректификации и вакуумной дистилляции.

Способ позволяет получить одновременно белые масла с кинематической вязкостью при 40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с и содержанием ароматических углеводородов не более 0,5 мас.%.

Минеральные белые масла представляют собой прозрачные глубокоочищенные дистиллятные фракции углеводородов, в основном нафтено-парафинового строения, с очень малым содержанием токсичных полициклических ароматических соединений, тяжелых металлов, серо- и азотсодержащих соединений или полным их отсутствием. Белые масла - химически инертны, без цвета, запаха и вкуса.

Белые масла подразделяются на два основных вида: технические и медицинские.

Белые масла имеют большое промышленное значение: медицинские белые масла применяют в фармацевтической промышленности, производстве косметических средств, пищевой промышленности и производстве упаковки; технические белые масла применяют в химической промышленности (производство полимеров, резины, гербицидов, пестицидов), текстильной промышленности (производство химических волокон), сельском хозяйстве (инсектицидные препараты, вазелин), электротехнической промышленности (заливка и пропитка конденсаторов).

Одним из наиболее важных технических показателей белых масел является процентное распределение углеводородов - ароматических (СА), нафтеновых (CN), парафиновых (CP). Особое внимание уделяется содержанию ароматических углеводородов (СА) ввиду их высокой токсичности: для технических белых масел содержание СА не должно превышать 7,0%; для медицинских белых масел содержание СА не должно превышать 0,5%, к некоторым типам масел применяют еще более жесткие требование по содержанию СА, заключающееся в полном их отсутствии.

Такое качество масел достигается очень высокой степенью очистки дистиллятов высококачественных нефтей нафтенового или парафинового строения глубоким сульфидированием, либо жестким гидрированием.

Из литературных данных известно, что технология производства белых масел может включать в себя:

- или ряд физико-химических методов очистки сырья от нежелательных компонентов, в том числе процессы сернокислотной очистки;

- или набор процессов каталитического гидрооблагораживания (гидрокрекинг, гидроочистка, каталитическая депарафинизация, гидроизомеризация, гидродепарафинизация, гидрофинишинг);

- или совмещение одного или нескольких гидропроцессов с физико-химическими методами.

Основным недостатком при использовании для получения белых масел только физико-химических методов очистки является низкий выход целевого продукта до 50 мас.% на сырье. Кром того при использовании сернокислотной очистки образуется большое количество кислого гудрона - трудно утилизируемого и экологически опасного отхода.

Анализ патентной литературы выявил три основных способа получения белых масел с использованием гидрокаталитических процессов: гидрооблагораживание рафинатов селективной очистки вакуумных погонов процесса первичной переработки нефти, гидроизомеризация высокопарафинистого сырья и гидрокаталитическая переработка продуктов гидрокрекинга.

Процессы каталитического гидрооблагораживания, как правило, проводятся при давлении выше 10,0 МПа, что требует применения дорогостоящего оборудования. Гидрокрекинг используется для повышения индекса вязкости и снижения содержания ненасыщенных углеводородов, в том числе ароматических. Гидрофинишинг или гидрирование применяют для стабилизации масла против окисления путем насыщения ароматических углеводородов и олефинов, разрушения окрашивающих веществ. Гидроочистку - для удаления серы и азота. Каталитическую депарафинизацию, гидроизомеризацию используют для удаления парафинов, тем самым улучшаются низкотемпературные свойства смазочного масла. Оптимальный вариант комбинации этих процессов выбирается в зависимости от многих факторов, главным образом, от качества исходного сырья, требований к продукту и от специфических требований ко всему процессу.

Несмотря на то, что в промышленном производстве белых масел используется большое разнообразие технологических схем, рабочих условий и катализаторов, остается потребность в новых способах, включая способы с использованием топливного гидрокрекинга тяжелого сырья, которые могут обеспечивать снижение затрат и повышение эффективности работы.

Известен способ получения технического или пищевого белого масла облагораживанием смазочного масла, включающий контактирование базовой фракции смазочного масла и водорода в условиях реакции гидрооблагораживания с катализатором, включающим платино-палладиевый сплав и оксидную матрицу окиси алюминия, двуокиси кремния и их комбинации, где мольное соотношение платины к палладию составляет от 2,5:1 до 1:2,5 и базовая фракция смазочного масла имеет интервал кипения в пределах температур от 315°С до 566°С и индекс вязкости, по меньшей мере, 90 [патент ЕА 001407 В1].

Недостатком способа является отсутствие возможности получать белые масла с содержанием ароматических углеводородов не более 0,5 мас.%.

Известен способ получения маловязких белых масел, включающий гидрокрекинг вакуумного газойля при объемном соотношении водорода к сырью 800-1000 нм33, объемной скорости подачи сырья 0,4-0,6 ч-1, температуре 340°С-360°С и парциальном давлении водорода 20-30 МПа на Ni/Mo катализаторе, нанесенном на алюмосиликатный носитель, с получением потока, выкипающего в диапазоне от 280°С до 400°С, с отделением из потока целевой фракции с температурой выкипания от 280°С до 340°С, содержанием ароматических углеводородов выше требуемой нормы и температурой застывания не выше минус 10°С и последующим гидрированием целевой фракции путем ее контактирования с водородом при объемном соотношении водорода к сырью 800-950 нм33 на катализаторе при температуре 240°С-320°С, парциальном давлении водорода 6,0-8,0 МПа, объемной скорости подачи сырья 0,25-0,5 ч-1 [патент RU 2549898 С1].

Способ позволяет получать белые масла с кинематической вязкостью при температуре 40°С от 5 до 12,5 мм2/с, содержанием ароматических углеводородов от 0,1 до 0,5 мас.%.

Недостатком способа является отсутствие возможности получать средневязкие и вязкие белые масла, наиболее востребованные на рынке.

Наиболее близким к предлагаемому способу является способ получения белых масел, описанный в патенте US 20090166251 А1. Основные стадии по первому варианту включают: 1) двухстадийную гидроочистку углеводородного сырья; 2) отделение аммиака и сероводорода из гидроочищенного продукта; 3) каталитическую депарафинизацию полученного гидроочищенного продукта; 4) удаление остаточного количества аммиака, сероводорода и легких фракций из продуктов гидрокрекинга; 5) разделение депарафинированного продукта; 6) двухстадийную гидроочистку депарафинированного сырья.

Второй вариант способа получения белых масел включает: 1) гидроочистку углеводородного сырья; 2) гидрокеркинг продукта гидроочистки; 3) удаление аммиака и сероводородаиз продуктов гидрокрекинга; 4) каталитическую депарафинизацию продукта гидрокрекинга; 5) гидроочистку продуктов депарафинизации; 6) фракционирование продукта первой стадии гидроочистки, с получением: легких фракций, первого погона медицинских белых масел, базового масла и технического белого масла; 7) гидроочистку первого погона медицинских белых масел.

Недостатком данных вариантов получения белых масел является многостадийность и низкий выход белых масел медицинского назначения.

Предлагаемым техническим решением изобретения является способ получения средневязких белых масел (медицинских и технических), отличающийся тем, что нефтяное сырье путем каталитического гидрокрекинга при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75%, с получением непревращенного остатка гидрокрекинга, содержащего не менее 90 мас.% насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30 мас.%, рафинат которого, полученный после селективной очистки непревращеного остатка растворителями, подвергается последовательно: гидроочистке, каталитической депарафинизации (гидроизомеризации), гидрофинишингу, ректификации и вакуумной дистилляции с одновременным выделением двух целевых фракций с кинематической вязкостью при +40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с и содержанием ароматических углеводородов не более 0,5%, при этом гидропроцессы проводятся при давлении менее 6,0 МПа.

Также, для снижения содержания ароматических углеводородов в целевых продуктах допускается использовать в качестве сырья смесь рафината непревращенного остатка гидрокрекинга с гачем, получаемым на установках сольвентной депарафинизации масел из рафината селективной очистки непревращенного остатка гидрокрекинга в соотношении: гач парафиновый - до 50%; рафинат непревращенного остатка гидрокрекинга - до 100%.

Рафинат непревращенного остатка гидрокрекинга, полученный после проведения селективной очистки растворителем от смол, ароматических соединений и окрашивающих веществ, самостоятельно или в смеси с парафиновым гачем, получаемым на установках сольвентной депарафинизации масел из рафината селективной очистки непревращенного остатка гидрокрекинга в соотношении: гач парафиновый - до 50%: рафинат непревращенного остатка гидрокрекинга - до 100% последовательно подвергается: гидроочистке с целью насыщения непредельных углеводородов и удаления соединений серы, азота; затем каталитической депарафинизации (гидроизомеризации) с целью снижения температуры застывания до температуры не выше минус 15°С; далее гидрофинишингу с целью насыщения олефинов, остаточных ароматических соединений и удаления окрашивающих веществ в депарафинированном продукте. На заключительном этапе, путем ректификации и вакуумной дистилляции одновременно выделяются две целевые фракции с кинематической вязкостью при 40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с соответственно и содержанием ароматических углеводородов не более 0,5%.

Данное изобретение проиллюстрируем примерами, не ограничивающими его область.

Пример 1

Углеводородное сырье, в состав которого входит прямогонный вакуумный газойль, полученный из смеси малосернистых нефтей, тяжелый газойль коксования, а также побочные продукты вторичных сольвентных процессов, последовательно проходит следующие стадии переработки:

а) гидрокрекинг смесевого углеводородного сырья при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75% с выделением непревращенного остатка гидрокрекинга, содержащего не менее 90 мас.% насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30 мас.%;

б) селективную очистку непревращенного остатка гидрокрекинга растворителем, с получением очищенного от смол, ароматических соединений и окрашивающих веществ рафината непревращенного остатка, используемого для производства белых масел;

в) гидроочистку рафината непревращенного остатка гидрокрекинга в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI группы и/или побочной подгруппы VIII группы периодической таблицы химических элементов, при температуре от 300°С до 400°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 500 до 1100 нм33 водородсодержащего газа;

г) каталитическую депарафинизацию (гидроизомеризацию) гидроочищенного рафината непревращенного остатка гидрокрекинга, полученного на стадии в), в присутствии катализатора, содержащего, по меньшей мере, один из металлов побочной подгруппы VIII группы периодической таблицы химических элементов, при температуре от 290°С до 400°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

д) гидрофинишинг гидроочищенного депарафинированного рафината непревращенного остатка гидрокрекинга, полученного на стадии д), в присутствии катализатора содержащего, по меньшей мере, один из металлов побочной подгруппы VIII групп периодической таблицы химических элементов, при температуре от 180°С до 300°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

е) ректификацию, при температуре в кубе ректификационной колонны не более 330°С и давлении не более 0,17 МПа, гидрооблагороженного рафината непревращенного остатка гидрокрекинга полученного на стадии д), с выделением фракции НК - 270°С, используемой в дальнейшем в качестве компонента товарных топлив, и фракции 270°С - КК.

ж) Вакуумная дистилляция, при температуре в кубе вакуумной колонны не более 315°С и давлении абс. не более 0,05 МПа, фракции 270°С - КК, полученной из гидрооблагороженного рафината непревращенного остатка гидрокрекинга на стадии ж), с выделением фракций 270°С-390°С и 390°С - КК, с кинематической вязкостью при 40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с соответственно (средневязкие белые масла).

В таблице 1 приведены типичные физико-химические характеристики непревращенного остатка гидрокрекинга, проводимого при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 и конверсии не ниже 75%.

В таблице 2 приведены типичные физико-химические характеристики рафината непревращенного остатка гидрокрекинга.

В таблице 3 приведены физико-химические характеристики гидроочищенного рафината непревращенного остатка. Гидроочистка проводилась при следующих параметрах ведения процесса: объемная скорость V=0,8 ч-1; давление Р=5,0 МПа; температура Т=320°С; кратность циркуляции ВСГ/сырье = 600 нм33.

В таблице 4 приведены характеристики гидроочищенного рафината непревращенного остатка гидрокрекинга после каталитической депарафинизации (гидроизомеризации) и гидрофинишинга.

где V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах = 2000 нм33.

Далее полученный гидрооблагороженный непревращенный остаток гидрокрекинга проходит ректификацию и вакуумную дистилляцию, с выделением целевых фракций 270°С-390°С и 390°С - КК.

В таблице 5 указан материальный баланс фракций, получаемых из гидрооблагороженного рафината непревращенного остатка гидрокрекинга при различных режимах проведения процессов каталитической депарафинизации (гидроизомеризации) и гидрофинишинга.

где V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах = 2000 нм33.

В таблице 6 приведены показатели качества целевых фракций 270°С-390°С и 390°С - КК, полученных при различных режимах проведения процессов каталитической депарафинизации (гидроизомеризации) и гидрофинишинга.

где V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах = 2000 нм33.

Пример 2

Рафинат непревращенного остатка гидрокеркинга, полученный способом, описанным в пунктах а), б) Примера 1, смешивается с парафиновым гачем, получаемым на установках сольвентной депарафинизации масел из рафината селективной очистки непревращенного остатка гидрокрекинга в соотношении: гач парафиновый - до 50%; рафинат непревращенного остатка гидрокрекинга - до 100% и далее последовательно проходит следующие стадии переработки:

а) гидроочистка смеси рафината непревращенного остатка гидрокрекинга с гачем в присутствии катализатора, содержащего, по меньшей мере, один из металлов VI группы и/или побочной подгруппы VIII группы периодической таблицы химических элементов, при температуре от 300°С до 400°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 500 до 1100 нм33 водородсодержащего газа;

б) каталитическая депарафинизация (гидроизомеризация) гидроочищенной смеси рафината непревращенного остатка гидрокрекинга с гачем, полученной на стадии а), в присутствии катализатора, содержащего, по меньшей мере, один из металлов побочной подгруппы VIII группы периодической таблицы химических элементов, при температуре от 290°С до 400°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

в) гидрофинишинг гидроочищенной депарафинированной смеси рафината непревращенного остатка гидрокрекинга с гачем, полученной на стадии б), в присутствии катализатора содержащего, по меньшей мере, один из металлов побочной подгруппы VIII групп периодической таблицы химических элементов, при температуре от 180°С до 300°С, давлении от 3,5 до 6,0 МПа, с объемной скоростью подачи сырья от 0,5 до 1,50 ч-1 и кратностью циркуляции от 1200 до 3800 нм33 водородсодержащего газа;

г) ректификация, при температуре в кубе ректификационной колонны не более 330°С и давлении не более 0,17 МПа, гидрооблагороженной смеси рафината непревращенного остатка гидрокрекинга с гачем полученной на стадии в), с выделением фракции НК - 270°С, используемой в дальнейшем в качестве компонента товарных топлив, и фракции 270°С - КК.

д) Вакуумная дистилляция, при температуре в кубе вакуумной колонны не более 315°С и давлении абс. не более 0,05 МПа, фракции 270°С - КК, полученной из гидрооблагороженной смеси рафината непревращенного остатка гидрокрекинга с гачем на стадии г), с выделением фракций с кинематической вязкостью при 40°С от 14,0 мм2/с до 16,0 мм2/с и от 28,8 мм2/с до 35,2 мм2 (средневязкие белые масла).

В ходе проведенных исследований было определено, что парафиновый гач, получаемый при проведении сольвентной депарафинизации из рафината непревращенного остатка гидрокрекинга характеризуется пониженным содержанием ароматических углеводородов по отношению к исходному сырью и, как следствие смешение его с рафинатом непревращенного остатка гидрокрекинга перед стадиями гидрооблагораживания позволит снизить содержание ароматических углеводородов и улучшить индекс вязкости получаемого белого масла.

В таблице 7 приведены типичные качественные характеристики рафината непревращенного остатка гидрокрекинга и получаемого из него в процессе депарафинизации гача и депарафинированного масла.

Суть предлагаемого изобретения покажем на примере смеси рафината непревращенного остатка гидрокрекинга (рафинат НОГК) с гачем, полученным из рафината НОГК в соотношении 60:40.

В таблице 8 приведены физико-химические характеристики получаемой смеси.

В таблице 9 приведены характеристики гидроочищенной смеси рафината НОГК с парафиновым гачем, полученным из рафината НОГК. Гидроочистка проводилась при следующих параметрах ведения процесса: объемная скорость V=1,5 ч-1; давление Р=5,0 МПа; температура Т=320°С; кратность циркуляции ВСГ/сырье = 600 нм33.

В таблице 10 приведены характеристики гидроочищенного рафината непревращенного остатка гидрокрекинга после каталитической депарафинизации (гидроизомеризации) и гидрофинишинга.

где V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах = 2000 нм33.

В таблице 11 указан материальный баланс фракций, получаемых из гидрооблагороженной смеси рафината НОГК с парафиновым гачем, полученным из рафината НОГК при различных режимах проведения процессов каталитической депарафинизации (гидроизомеризации) и гидрофинишинга.

где V - объемная скорость подачи сырья, Р - давление в каталитической системе, Ткд - температура проведения каталитической депарафинизации (гидроизомеризации), Тгф - температура проведения гидрофинишинга. Кратность циркуляции ВСГ/сырье на всех режимах = 2000 нм33.

В таблице 12 приведены показатели качества целевых фракций 270°С-390°С и 390°С - КК, полученной при различных режимах проведения процессов каталитической депарафинизации (гидроизомеризации) и гидрофинишинга смеси рафината НОГК с парафиновым гачем.

Анализ данных, приведенных в таблицах 6 и 12 показывает, что полученные масла по своим качественным показателям соответствуют требованиям, предъявляемым к белым маслам по содержанию ароматических соединений - не более 0,5%.

Технический результат - получение белых масел из непревращенного остатка гидрокрекинга, соответствующего требованиям к медицинским и техническим белым маслам, при давлении ведения гидропроцессов менее 6,0 МПа.

1. Способ получения средневязких белых масел, отличающийся тем, что нефтяное сырье (вакуумный газойль) подвергается каталитическому гидрокрекингу при давлении не менее 13,5 МПа, температуре от 380°С до 430°С, объемной скорости подачи сырья от 0,5 до 1,5 ч-1 со степенью конверсии не менее 75%, с получением непревращенного остатка гидрокрекинга, содержащего не менее 90 мас.% насыщенных углеводородов, в том числе изопарафиновых углеводородов не менее 30 мас.%, рафинат которого, полученный после селективной очистки непревращеного остатка растворителями, подвергается последовательно: гидроочистке, каталитической депарафинизации (гидродепарафинизации), гидрофинишингу, ректификации и вакуумной дистилляции с одновременным выделением двух целевых фракций с кинематической вязкостью при +40°С от 13,5 мм2/с до 16,5 мм2/с и от 28,8 мм2/с до 35,2 мм2/с и содержанием ароматических углеводородов не более 0,5%, при этом гидропроцессы проводятся при давлении менее 6,0 МПа.

2. Способ получения средневязких белых масел по п. 1, отличающийся тем, что перед проведением процесса гидроочистки, рафинат непревращенного остатка гидрокрекинга смешивается с гачем, получаемым на установках сольвентной депарафинизации масел из рафината селективной очистки непревращенного остатка гидрокрекинга в соотношении: гач парафиновый - до 50%; рафинат непревращенного остатка гидрокрекинга - до 100%.



 

Похожие патенты:

В заявке описана композиция смазочного масла, включающая (a) от 0,2 до 5 мас.% неполных сложных эфиров полиглицерина в пересчете на полную массу композиции смазочного масла, отличающаяся тем, что неполные сложные эфиры полиглицерина можно получить путем этерификации смеси полиглицеринов с помощью (i) многофункциональных карбоновых кислот и (ii) насыщенных или ненасыщенных, линейных или разветвленных жирных кислот и (ii) поли(гидроксистеариновой кислоты), где степень этерификации смеси полиглицеринов составляет от 30 до 75% групп OH; (b) от 85 до 99,8 мас.% аполярного базового компонента, выбранного из группы, включающей базовые компоненты АНИ группы II, III и IV и/или их смеси, в пересчете на полную массу композиции смазочного масла; и (c) от 0 до 10 мас.% полярного сложноэфирного масла группы V, соответствующего определению Американского нефтяного института (АНИ), в пересчете на полную массу композиции смазочного масла, отличающаяся тем, что многофункциональные карбоновые кислоты (i) являются алифатическими дикарбоновыми кислотами, которые выбраны из группы, состоящей из малоновой кислоты, янтарной кислоты, фумаровой кислоты, малеиновой кислоты, диметилглутаровой кислоты, адипиновой кислоты, триметиладипиновой кислоты, азелаиновой кислоты, себациновой кислоты, додекандикарбоновой кислоты и их ангидридов, и что неполные сложные эфиры полиглицерина обладают значениями показателя ГЛБ, равными от 3 до 7, и числом OH, находящимся в диапазоне от 50 до 180 мг KOH/г, включающая неполные сложные эфиры полиглицерина многофункциональных карбоновых кислот и насыщенных или ненасыщенных, линейных или разветвленных жирных кислот и/или поли(гидроксистеариновой кислоты).

Настоящее изобретение относится к смазочной композиции, а более конкретно к смазочной композиции, которая содержит олигомер этилена-альфа-олефина и соединение алкилированного фосфония, что позволяет снизить расход энергии и повысить устойчивость к негативным факторам, и, таким образом, данная композиция подходит для использования в редукторном масле.

Данное изобретение относится к смазочной композиции, то есть к смазочной композиции, обладающей очень хорошей стабильностью против окисления, и имеет улучшенные фрикционные характеристики даже в тяжелых условиях высокой температуры и высокого давления и, таким образом, подходит для использования в гидравлическом масле.

В настоящем изобретении заявлена смазочная композиция для уменьшения коррозии меди и свинца, содержащая базовое масло, присутствующее в количестве по меньшей мере 85% масс.

Настоящее изобретение относится к консервационным, смазочным композициям и чистящим композициям, которые могут применяться для смазки, очистки поверхностей от нагара и консервации всех видов стрелкового оружия: нарезного, гладкоствольного и травматического.Смазка для консервации и чистки стрелкового оружия содержит, мас.

Предложены композиция смазочного масла, применение и способ осуществления работы двигателя внутреннего сгорания. Композиция смазочного масла содержит более 50 масс.% базового масла, выбранного из группы, состоящей из базового масла I группы, базового масла II группы, базового масла III группы, базового масла IV группы, базового масла V группы и их смесей; моющую присадку сверхосновного сульфоната кальция с общим щелочным числом от 225 до 400 мг KOH/г, измеренным способом согласно ASTM D-2896, моющую присадку сверхосновного сульфоната магния, моющую присадку сверхосновного фенолята магния, моющую присадку сверхосновного салицилата магния или их смеси в количестве, обеспечивающем от 50 до 1000 ppm по массе магния в композиции смазочного масла, и одно из: (a) моющей присадки сверхосновного фенолята кальция или салицилата кальция с общим щелочным числом от более 225 до 400 мг KOH/г, измеренным способом согласно ASTM D-2896, и (b) моющей присадки низкоосновного сульфоната кальция, моющей присадки низкоосновного фенолята кальция, моющей присадки низкоосновного салицилата кальция или их смеси с общим щелочным числом вплоть до 175 мг KOH/г, измеренным способом согласно ASTM D-2896, в количестве, обеспечивающем по меньшей мере 50 ppm по массе кальция в композиции смазочного масла относительно общей массы смазочной композиции, при этом указанная композиция смазочного масла содержит такое количество сверхосновных кальцийсодержащих моющих присадок, которое обеспечивает от 900 ppm по массе до менее 1800 ppm по массе кальция в композиции смазочного масла в расчете на общую массу композиции смазочного масла, и общее содержание кальция в смазочной композиции составляет до 1800 ppm относительно общей массы композиции смазочного масла; и указанная композиция смазочного масла успешно проходит испытание согласно TEOST-33.

Настоящее изобретение относится к композиции смазочного масла, способу снижения числа случаев преждевременного воспламенения смеси (LSPI) при низких оборотах в двигателе внутреннего сгорания с наддувом, а также к применению данной композиции для осуществления этого способа.

Предложена композиция смазочного масла, применение и способ обеспечения приемлемого числа случаев преждевременного воспламенения смеси при низких оборотах в двигателе внутреннего сгорания с применением композиции смазочного масла.

Настоящее изобретение относится к композиции смазочного масла, к применению и способу снижения числа случаев преждевременного воспламенения смеси при низких оборотах в двигателе внутреннего сгорания с наддувом.

Изобретение относится к пластичным защитным и антифрикционным смазкам и может быть использовано в узлах трения машин и механизмов, работающих в условиях агрессивных сред и нормальных и высоких температур, для защиты от коррозии и механического износа изделий из черных и цветных металлов, а также для консервации оборудования и комплектующих частей оборудования в сталелитейной, горнодобывающей, судостроительной, машиностроительной и других отраслях промышленности.

Предложен способ приготовления консистентной смазки, включающий этап, на котором проводят реакцию соединения формулы (a) с соединением формулы (b) для получения соединения формулы (c), где R1 выбрано из гидрокарбила, имеющего от 1 до 30 атомов углерода, R2 выбрано из гидрокарбила или гидрокарбилена, содержащего от 1 до 30 атомов углерода, R3 выбрано из гидрокарбила, содержащего от 2 до 30 атомов углерода и n равно 2, и где реакция соединения формулы (a) с соединением формулы (b) проводится в присутствии базового масла или соединение формулы (c) смешивают с базовым маслом.
Наверх