Способ получения силикатного стекла

Изобретение относится к способам получения силикатного стекла и может быть использовано в промышленности строительных материалов. Техническим результатом предлагаемого изобретения является ускорение технологического процесса получения силикатного стекла. Способ получения силикатного стекла включает дозирование, усреднение и смешивание компонентов шихты, гранулирование шихты, непрерывную подачу гранулированной шихты в питатель плазменного реактора и затем в плазменный реактор, плавление шихты в плазменном реакторе отходящим потоком плазмообразователя, транспортировку диспергированного расплава в ванну стекловаренной печи, непрерывную выработку и слив стекломассы через выработочный канал ванной стекловаренной печи. Подачу в питатель плазменного реактора гранулированной шихты осуществляют одновременно с подачей отходящих плазмообразующих газов, затем термически обработанную гранулированную шихту непрерывно подают в плазменный реактор, плавление термически обработанной шихты выполняют в плазменном реакторе отходящим потоком плазмообразователя в течение 0,5 часа при расходе плазмообразующего газа 1,0-1,1 /час.

 

Изобретение относится к способам получения силикатного стекла и может быть использовано в промышленности строительных материалов.

Из уровня техники известны способы получения силикатного стекла. Недостатком данных способов является длительность технологического цикла.

Наиболее близким решением к предлагаемому способу по технической сущности и достигаемому результату является способ получения силикатного стекла (патент РФ №2669975), включающий дозирование, усреднение и смешивание компонентов шихты, гранулирование шихты, непрерывную подачу гранулированной шихты в питатель плазменного реактора и затем в плазменный реактор, плавление шихты в плазменном реакторе отходящим потоком плазмообразователя в течение 1 часа, непрерывную выработку расплава, транспортировку диспергированного расплава в ванну стекловаренной печи отходящим потоком плазмообразующего газа плазменной струи при мощности работы плазмотрона 14-16 кВт и расходе плазмообразующего газа 2,0-2,2 /ч, а также слив стекломассы через выработочный канал ванны лабораторной стекловаренной печи.

Недостатком прототипа является длительность технологического процесса получения силикатного стекла.

Техническим результатом предлагаемого изобретения является ускорение технологического процесса получения силикатного стекла.

Технический результат достигается тем, что способ получения силикатного стекла, включающий дозирование, усреднение и смешивание компонентов шихты, гранулирование шихты, непрерывную подачу гранулированной шихты в питатель плазменного реактора и затем в плазменный реактор, плавление шихты в плазменной реакторе отходящим потоком плазмообразователя, транспортировку диспергированного расплава в ванну стекловаренной печи, непрерывную выработку и слив стекломассы через выработочный канал ванной стекловаренной печи, причем подачу в питатель плазменного реактора гранулированной шихты осуществляют одновременно с подачей отходящих плазмообразующих газов, затем термически обработанную гранулированную шихту непрерывно подают в плазменный реактор, плавление термически обработанной шихты выполняют в плазменном реакторе отходящим потоком плазмообразователя в течение 0,5 часа при расходе плазмообразующего газа 1,0–1,1 /час.

Предлагаемый способ получения стекла отличается от прототипа тем, что:

- подачу в питатель плазменного реактора гранулированной шихты осуществляют одновременно с подачей отходящих плазмообразующих газов;

- термически обработанную гранулированную шихту непрерывно подают в плазменный реактор;

- плавление термически обработанной шихты выполняют в плазменном реакторе отходящим потоком плазмообразователя в течение 0,5 часа при расходе плазмообразующего газа 1,0 – 1,1 /час.

Сопоставительный анализ технологических операций известного и предлагаемого способов представлен в таблице 1.

Как видно из таблицы 1, в питатель одновременно подается гранулированная шихта и отходящие плазмообразующие газы. Экспериментально установлено, что под действием высоких температур этих газов в шихте протекает первая энергоемкая стадия стекловарения – силикатообразование: Na2СO3 + SiO2 = Na2 SiO3 + СO2. Поэтому уменьшается на 40% расход энергии на 1 кг стекломассы по сравнению с известным способом (таблица 2), затрачиваемый на процесс плавления силикатов с образованием силикатного расплава в плазменном реакторе, и снижается на 50% время синтеза силикатного стекла и расход плазмообразующего газа по сравнению с прототипом.

Таблица 1

Сопоставительный анализ технологических операций известного и предлагаемого способов

Известный способ Предлагаемый способ
Дозирование, усреднение и смешивание компонентов шихты

Гранулирование шихты

Непрерывная подача гранулированной шихты в питатель плазменного реактора

Непрерывная подача гранулированной шихты из питателя в плазменный реактор

Плавление шихты в плазменном реакторе (1 час)

Непрерывная выработка расплава

Транспортировка диспергированного расплава в ванну стекловаренной печи с помощью отходящего потока плазмообразующего газа плазменной струи плазмотрона

Слив стекломассы через выработочный канал ванны лабораторной стекловаренной печи
Дозирование, усреднение и смешивание компонентов шихты

Гранулирование шихты

Одновременная непрерывная подача в питатель плазменного реактора отходящих плазмообразующих газов и гранулированной шихты

Одновременная непрерывная подача термически обработанной шихты и отходящих плазмообразующих газов в плазменный реактор

Плавление в плазменном реакторе термически обработанной отходящими плазмообразующими газами шихты (0,5 часа)

Непрерывная выработка расплава

Транспортировка диспергированного расплава в ванну стекловаренной печи с помощью отходящего потока плазмообразующего газа плазменной струи плазмотрона

Слив стекломассы через выработочный канал ванны лабораторной стекловаренной печи

Таблица 2

Сравнительная характеристика расхода энергии на получение 1 кг стекломассы

Известный способ Предлагаемый способ
О,32 кВт
(1152 кДж)
0,19 кВт
(691 кДж)

Проведенный анализ известных способов получения силикатного стекла позволяет сделать вывод о соответствии заявляемого изобретения критерию «новизна».

Оптимальный расходом отходящих плазмообразующих газов (1,0-1,1 /час.) получен экспериментальным путем. Опытным путем установлено, что при уменьшении расхода разогретых отходящих плазмообразующих газов не осуществиться полное протекание процессов силикатообразования в гранулированной шихте, а при увеличении расхода газа 1,1 /час увеличиваются энергозатраты на синтез 1 кг стекломассы.

Пример получения силикатного стекла

Для получения силикатного стекла использовали компоненты: соду кальцинированную (ГОСТ 5100-85 E), мел (ГОСТ 17498 – 72), технический глинозем (ГОСТ 30559 – 98), кварцевый песок (ГОСТ 22551 – 71), доломит (ГОСТ 23672 – 79).

Данные оксиды дозировали в пропорциях в пересчете на чистые оксиды: SiO2 -72,9 %; Al2 O3 - 1,9 %; CaO – 8,6%, Na2O – 14,0%, MgO -3,9%.

Компоненты усредняли в лабораторном смесителе в течение 30 минут и гранулировали тарельчатом грануляторе. Затем зажигания дуги плазменной горелки ГН- 5р подавали в плазменный реактор УПУ-8М плазмообразующий газ аргон. Разогретый в плазменном реакторе УПУ-8М плазмообразующий газ подавали в питатель одновременно с гранулированной шихтой. Из питателя термообработанная шихта с разогретыми плазмообразующими газами подавалась в плазменный реактор с расходом плазмообразующего газа 1,1 /час. Температура в плазменном реакторе составляет 8000К, а мощность работы плазмотрона 16 кВт. После заполнения в течении 30 минут ванны стекловаренной печи стекломассу объемом 50 кг сливали через выработанный канал для последующего формования изделий.

Способ получения силикатного стекла, включающий дозирование, усреднение и смешивание компонентов шихты, гранулирование шихты, непрерывную подачу гранулированной шихты в питатель плазменного реактора и затем в плазменный реактор, плавление шихты в плазменном реакторе отходящим потоком плазмообразователя, транспортировку диспергированного расплава в ванну стекловаренной печи, непрерывную выработку и слив стекломассы через выработочный канал ванной стекловаренной печи, отличающийся тем, что подачу в питатель плазменного реактора гранулированной шихты осуществляют одновременно с подачей отходящих плазмообразующих газов, затем термически обработанную гранулированную шихту непрерывно подают в плазменный реактор, плавление термически обработанной шихты выполняют в плазменном реакторе отходящим потоком плазмообразователя в течение 0,5 часа при расходе плазмообразующего газа 1,0–1,1 м3/час.



 

Похожие патенты:
Изобретение относится к области синтеза щелочных силикатных стекол (силикат-глыбы) и может быть использовано в промышленности строительных материалов. Технический результат предлагаемого изобретения заключается в снижении длительности технологического процесса синтеза силикат-глыбы.

Изобретение относится к использованию минерального сырья хромдиопсида (магний-кальциевый силикат состава MgCaSi2O6, содержащий примесь хрома) для получения ювелирного поделочного материала в виде плавленых цветных однородных окрашенных стеклообразных образцов.

Изобретение относится к области энергетики, а также к процессам горения для плавления стекла. Горелка (1) для погружного горения содержит по меньшей мере одну трубку (5, 9) для подачи окислителя, по меньшей мере одну трубку (7) для подачи топлива, головку горелки, имеющую внешнюю оболочку (13), причем трубки (5, 7, 9) для подачи топлива и окислителя соединены встык с головкой горелки, по меньшей мере две, предпочтительно по меньшей мере три периферийные направленные наружу форсунки (21), причем каждая из форсунок имеет выпускное отверстие (23) форсунки, причем выпускные отверстия (23) форсунок расположены по периметру внешней оболочки (13) головки горелки, причем ось (22) выпускных отверстий форсунки наклонена под углом 5-30° к горизонтали и причем форсунки (21), применяемые в головке горелки, соединены с трубкой (5, 9) для подачи окислителя и с трубкой (7) для подачи топлива.
Изобретение относится к способу получения силикатного стекла. Способ включает дозирование, усреднение и смешивание компонентов шихты, гранулирование шихты, подачу гранулированной шихты в питатель плазменного реактора и плавление шихты в плазменном реакторе отходящим потоком плазмообразователя в течение 1 часа.

Группа изобретений относится к способу непрерывной плавки в барботажном слое силикатных материалов для получения теплоизоляционного волокна и печи для непрерывной плавки в барботажном слое силикатных строительных расплавов для получения теплоизоляционного волокна.

Изобретение относится к огнеупорному изделию на основе бета-глинозёма, которое выполнено в виде блока формования стеклянного листа путем переливания. Огнеупорное изделие имеет общее содержание Al2O3 приблизительно от 50 до 97%, причем Al2O3 содержит альфа-Al2O3 и бета-глинозем.

Изобретение относится к способу получения однородного стекла. Способ включает составление шихты, варку исходного стекла заданного состава для получения стеклогранулята, его диспергирование.
Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку.
Изобретение относится к особо чистым стеклам для инфракрасной оптики. Технический результат – снижение содержания оптически активных примесей.

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного стекла и от 0,225 мкм до 8 мкм для фторгафнатного стекла.
Наверх