Полимерный теплопроводящий высокоэластичный композиционный материал

Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для электротехнических и электронных устройств, изделий силовой электроники, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов. Технической задачей изобретения является повышение теплопроводности и коэффициента сжимаемости теплопроводящего композиционного материала с низкой плотностью. Технический результат достигается путем введения наполнителя в матрицу на основе кремнийорганического каучука или силиконового герметика, разбавленных силиконовыми маслами в количестве от 30% до 40% , при этом наполнитель выполнен как в виде частиц гексагонального нитрида бора размером от 0,8 мкм до 35 мкм в количестве 0,1-80% от общей массы полимерного теплопроводящего высокоэластичного композиционного материала, так и в виде частиц синтетических микроалмазов в количестве до 10% от общей массы вышеуказанного материала, при этом частицы синтетических микроалмазов могут располагаться в матрице хаотично.

 

Изобретение относится к области теплопроводящих диэлектрических материалов и может найти применение при изготовлении теплоотводящих прокладок, лент, герметиков, заливочных компаундов для электротехнических и электронных устройств, изделий силовой электроники, портативных устройств, блоков электропитания и силовых преобразователей, в которых необходимо обеспечить теплоотвод от теплонагруженных элементов и узлов.

Известен полимерный теплопроводящий компаунд для герметизации [Патент РФ Теплопроводящий компаунд для герметизации RU 2651178, МПК С09К 3/10, 18.04.2018 г. Авторы: Мушенко В.Д., Сулаберидзе В.Ш., Ефремов Н.Ю., Михеев В.А., Мушенко Д.В.].

Недостатком данной композиции является низкое значение коэффициента теплопроводности, а так же использование данной композиции только для герметизации технических изделий и систем, и не возможности использования данной композиции для изготовления теплопроводящих прокладок.

Известен теплопроводящий электроизоляционный композиционный материал [Патент РФ Теплопроводящий электроизоляционный композиционный материал RU 2643985, С09К 5/100, C08L 23/06, C08K 3/38, C08K3/28, 06.02.2018 г. Авторы: Новокшонова Л.А., Кудинова О.И., Берлин А.А., Гринев В.Г., Нежный П.А., Крашенинников В.Г.].

Недостатком данной композиции является сложность технологического процесса, в котором требуется применение диспергирования гексагонального нитрида бора ультразвуковой обработкой до пластинчатых частиц для наполнения сверхвысокомолекулярного полиэтилена полимеризационным методом. Другим недостатком можно считать применение композиционного материала только в качестве радиатора для особо теплонагруженных элементов, что уменьшает эффективность работы композиционного материала за счет термических сопротивлений на границах соприкосновения материала и элементов.

Наиболее близким по технической сущности к предлагаемому изобретению является теплопроводящий электроизоляционный высокоэластичный гелевый листовой материал группы КПТД-2М фирмы НОМАКОН по ТУ РБ 100009933.004-2001, включающий гелевую силиконовую основу с максимальной эластичностью и различные фракции микропорошков теплопроводящего керамического наполнителя, содержащий микропорошки α-Кристалентма и β- Кристалентма и нитридной керамики, полученный под давлением плотноупакованной однородной структуры.

Недостатком данной композиции является сложность подготовки теплопроводящего компонента, а также относительно низкий коэффициент теплопроводности композиции 0,8-1,4 Вт/(М·К) в сочетании с высокой плотностью от 1.8 г/см3.

Техническая задача, которую решает предлагаемое изобретение, заключается в повышении теплопроводности и коэффициента сжимаемости теплопроводящего композиционного материала с низкой плотностью.

Технический результат достигается путем введения наполнителя в матрицу на основе кремнийорганического каучука или силиконового герметика, разбавленных силиконовыми маслами в количестве от 30% до 40% , при этом наполнитель выполнен как в виде частиц гексагонального нитрида бора размером от 0,8 мкм до 35 мкм в количестве 0,1-80% от общей массы полимерного теплопроводящего высокоэластичного композиционного материала, так и в виде частиц синтетических микроалмазов в количестве до 10% от общей массы вышеуказанного материала, при этом частицы синтетических микроалмазов могут располагаться в матрице хаотично.

В случае применения наполнителей в виде теплопроводящих частиц гексагонального нитрида бора в сочетании с хаотически расположенными частицами синтетических микроалмазов оба наполнителя перемешиваются, образуя порошковую структуру, которая в дальнейшем вмешивается в матрицу, которая изначально находится в жидком состоянии.

После введения в жидкую матрицу наполнителей производился процесс отверждения, который протекает в нормальных условиях с участием отвердителей или в результате взаимодействия реакционноспособных групп олигомеров между собой.

Теплопроводность композиции увеличивается за счет того, что высоко теплопроводящие синтетические частицы микроалмазов, распределяясь в матрице, образуют каналы проводимости тепла в виде отдельных микрочастиц, а теплопроводящие частицы нитрида бора обеспечивают более плотную упаковку в матрице. При этом для обеспечения более высокой плотности упаковки применяются частицы с разбросом размера частиц от 0,8 до 35 мкм. Полученные значительные величины коэффициента теплопроводности обусловлены низкой концентрацией или полным отсутствием дефектов в композиционном материале.

Технологичность изготовленного полимерного теплопроводящего композиционного материала достигается путем применения стандартных (общеприменяемых) технологических операций (смешивание, измельчение, полимеризация) в нормальных условиях.

При этом числовые значения коэффициента теплопроводности не зависят от типа матрицы на основе кремнийорганического каучука или силиконового герметика, разбавленных силиконовыми маслами, при заданной концентрации наполнителя.

Пример 1.

Изготавливали полимерный теплопроводящий высокоэластичный композиционный материал, имеющий в качестве матрицы кремнийорганический каучук, разбавленный силиконовыми маслами в количестве до 50% от общей массы матрицы, в которую, при нахождении ее в изначальном жидком состоянии, добавляли гексагональный нитрид бора в количестве 80% от общей массы нанокомпозита. Полученная композиция отверждалась при помощи отвердителя в нормальных условиях. В результате значение коэффициента теплопроводности данного композиционного материала составляло величины от 1,4 Вт/м*K до 1,8 Вт/м*K (при температуре 24°C), а коэффициент сжимаемости нанокомпозита варьировался в пределах от 25% до 30 %.

Пример 2.

Изготавливали полимерный теплопроводящий высокоэластичный композиционный материал, имеющий в качестве матрицы кремнийорганический каучук или силиконовый герметик разбавленные силиконовыми маслами в количестве до 50% от общей массы матрицы, в которую, при нахождении ее в изначальном жидком состоянии, добавляли частицы гексагонального нитрида бора с размером частиц от 0,8 мкм до 35 мкм в количестве 70% от общей массы нанокомпозита в сочетании с синтетическими микроалмазами диаметром до 80 мкм в количестве 10% от общей массы нанокомпозита. Полученная композиция отверждалась при помощи отвердителя в нормальных условиях. В результате значение коэффициента теплопроводности данного композиционного материала составляло величины от 1,5 Вт/м*K до 1,8 Вт/м*K (при температуре 24°C), а коэффициент сжимаемости нанокомпозита варьировался в пределах от 50% до 60%.

Пример 3.

Изготавливали полимерный теплопроводящий высокоэластичный композиционный материал, имеющий в качестве матрицы силиконовый герметик разбавленный силиконовыми маслами в количестве до 50% от общей массы матрицы, в которую, при нахождении ее в изначальном жидком состоянии, добавляли частицы гексагонального нитрида бора с размером частиц от 0,8 мкм до 35 мкм в количестве 80% от общей массы нанокомпозита в сочетании с синтетическими микроалмазами диаметром от 63 до 80 мкм в количестве 10% от общей массы нанокомпозита. Полученная композиция отверждалась при помощи отвердителя в нормальных условиях. В результате значение коэффициента теплопроводности данного композиционного материала составляло величины от 1,8 Вт/м*K до 2 Вт/м*K (при температуре 24°C), а коэффициент сжимаемости нанокомпозита варьировался в пределах от 55% до 70%.

Характеристики теплопроводящего высокоэластичного композиционного материала приведены в таблице 1

Наименование параметра Номер примера
1 2 3
Плотность, г/см3 1,15-1,2 1,25-1,3 1,25-1,3
Условная вязкость, мм 20 22 25
Время жизнеспособности, мин, в пределах 10-20 10-20 10-20
Тангенс угла диэлектрических потерь при частоте 106 Гц,
не более
0,0067 0,0067 0,0067
Диэлектрическая проницаемость при частоте 106 Гц, не менее 3,45 3,48 3,48
Теплопроводность, Вт/м·К, не менее 1,4-1,8 1,5-1,8 1,8-2
Усадка, %, не более 0,1 0,1 0,1
Водопоглощение, % не более 0,1 0,1 0,1
Сжимаемость, % не менее 25-30 50-60 55-70
Коэффициент линейного теплового расширения, 1/К (229±10)·10-6 (229±10)·10-6 (229±10)·10-6

Полимерный теплопроводящий высокоэластичный композиционный материал, включающий в себя матрицу на основе кремнийорганического каучука или силиконовый герметик, разбавленные силиконовыми маслами в количестве до 50% от общей массы матрицы, с наполнителем в количестве 85% от общей массы теплопроводящего композиционного материала, при этом наполнитель выполнен как в виде частиц гексагонального нитрида бора, размерность которых выражена в нанометрах и микронах, в сочетании с синтетическими микроалмазами в количестве 10% от общей массы теплопроводящего композиционного материала, так и в виде частиц синтетических микроалмазов в количестве до 10% от общей массы вышеуказанного материала.



 

Похожие патенты:

Описан способ сжижения насыщенной углеводородами фракции (А), в котором насыщенную углеводородами фракцию охлаждают с помощью по меньшей мере одного контура смешанного холодильного агента (E1, Е2, Е3).

Изобретение относится к способу непрерывного ультразвукового приготовления низкотемпературного органического теплоносителя на основе фенилалкана, заключающемуся в том, что ациклический парафин смешивают с фенильным соединением, полученную смесь нагревают, добавляют катализатор алкилирования, алкилируют смесь, выдерживая смесь под воздействием ультразвукового поля, и путем дистилляции выделяют из смеси теплоноситель, отличающемуся тем, что нагрев смеси производят до температуры 150-180°С, частоту ультразвукового поля выбирают в диапазоне 21.3-25.7 кГц, а объемную скорость подачи нагретой смеси в системе, протекающей через реактор алкилирования, выбирают согласно формуле в пределах V/70 < v < V/50, где v - объемная скорость подачи смеси (м3/мин), а V - объем реактора (м3).

Изобретение относится к области криогенной техники, в частности холодильной техники, и может быть использовано для получения низкотемпературных теплоносителей на основе фенилалкана.

Изобретение может быть использовано в теплоэнергетике. Теплоаккумулирующий состав содержит, мас.%: LiF - 29,0÷29,8; NaF - 11,4÷12,0; KF - 58,8÷59,1.

Изобретение относится к области теплоэнергетики и может быть использовано в тепловых аккумуляторах и в устройствах теплотехники. Теплоаккумулирующий состав содержит (мас.

Изобретение относится к композициям, содержащим, по меньшей мере, один фторсодержащий кетон и которые могут найти применение для тушения или сдерживания огня, к способу стабилизации таких композиций, способам уменьшения разрушения этих композиций, способу замедления реакции между кислородом и композицией, способам подавления огня и тушения огня, а также к применению этих композиций.

Изобретение относится к обуви. Предложенная обувь (1) имеет улучшенный тепловой комфорт и содержит: верх (2), имеющий задник (7) и передний мысок, слой пены с эффектом памяти, включающий микрокапсулы с фазовым переходом; внутреннюю подкладку и стельку, наполненную микрокапсулами с фазовым переходом; и углубление, выполненное в подошве (3) и отделенное от внутренней части ботинка с помощью перфорированной части стельки, заполненное микрокапсулами с фазовым переходом, при этом указанные микрокапсулы с фазовым переходом имеют температуру затвердевания в интервале от 18 до 23 °C, а температура плавления составляет от 24 до 32 °C.

Изобретение относится к способу теплопередачи между металлическим или неметаллическим изделием и жидким теплоносителем, а также к жидкому теплоносителю, и может найти применение для отраслей промышленности, связанных с производством стали, алюминия, нержавеющей стали, меди, железа, медных сплавов, титана, кобальта, металлических композитов, никеля или при получении неметаллических материалов, таких как пластмассы.
Изобретение относится к холодильной и отопительной технике, в частности к жидким рабочим составам для применения в качестве промежуточного хладоносителя или низкозамерзающего теплоносителя.

Изобретение относится к теплоэнергетике, в частности к разработке теплоаккумулирующих составов. Теплоаккумулирующий состав включает 11.4-12.0 мас.% фторида лития, 63.3-63,8 мас.% сульфата лития и 24,4-25,0 мас.% карбоната лития.

Настоящее изобретение относится к полимерам на основе пропилена, применимым в качестве модификаторов для протекторов шины. Описана композиция протектора шины, содержащая продукт реакции компонентов, содержание которых в пересчете на массу композиции находится в диапазоне от: от 5 до 75 мас.
Наверх