Беспилотный летательный аппарат

Изобретение относится к области авиации, в частности к системам запуска беспилотных летательных аппаратов с самолетов-носителей. Беспилотный летательный аппарат содержит узлы для крепления на пусковое устройство самолета-носителя, разгонную двигательную установку, систему управления его положением в автономном полете, полезную нагрузку, а также импульсные реактивные двигатели для создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести беспилотного летательного аппарата, с увеличением угла тангажа, и компенсации этого импульса вращения. БПЛА снабжен тормозным парашютом, содержащим купол, трос и стропы, соединяющие купол с тросом. БПЛА снабжен коробом, закрепленным на беспилотном летательном аппарате со стороны хвостовой части через устройство крепления короба, выполненное с возможностью расфиксации его крепления, и устройством крепления конечного участка троса в зоне верхней точки поверхности хвостовой части, выполненным с возможностью расфиксации крепления. Купол, стропы и начальный участок троса упакованы в короб, а конечный участок троса парашюта закреплен в устройстве его крепления. Обеспечивается уменьшение массы беспилотного летательного аппарата и времени его выведения на высотную траекторию полета. 6 ил.

 

Изобретение относится к беспилотным летательным аппаратам (БПЛА), транспортируемым другими летательными аппаратами и отделяемым в полете для выведения на высотную траекторию полета.

Известен БПЛА, патент RU №2702261, принятый за прототип, содержащий узлы для крепления на пусковое устройство самолета-носителя вдоль фюзеляжа, выполненное с возможностью его отделения в полете, разгонную двигательную установку, систему управления его положением в автономном полете, полезную нагрузку, а также импульсные реактивные двигатели, создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести беспилотного летательного аппарата, с увеличением угла тангажа, и компенсации этого импульса вращения.

Все существенные признаки прототипа совпадают с существенными признаками предлагаемого устройства.

Известный БПЛА изготавливают с формой внешней поверхности, обеспечивающей минимальное аэродинамическое сопротивление в обтекающем его потоке атмосферного воздуха, для уменьшения массы топлива разгонной двигательной установки, необходимой для выполнения полета и массы БПЛА в целом. Минимальное аэродинамическое сопротивление БПЛА после его отделения обеспечивает уменьшение ускорения торможения БПЛА в потоке обтекающего воздуха, вследствие чего увеличиваются время удаления БПЛА от самолета-носителя на безопасное расстояние и потеря высоты полета перед запуском разгонной двигательной установки. На компенсацию потери высоты полета БПЛА расходуется топливо разгонной двигательной установки, что увеличивает потребную массу топлива разгонной двигательной установки.

Техническим результатом, на достижение которого направлено техническое решение, является уменьшение потребной массы топлива разгонной двигательной установки.

Для решения поставленной задачи беспилотный летательный аппарат, содержащий узлы для крепления на пусковое устройство самолета-носителя вдоль фюзеляжа, выполненное с возможностью его отделения в полете, разгонную двигательную установку, систему управления его положением в автономном полете, полезную нагрузку, а также импульсные реактивные двигатели, создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести беспилотного летательного аппарата, с увеличением угла тангажа, и компенсации этого импульса вращения, снабжен тормозным парашютом, содержащим купол, трос и стропы, соединяющие купол с тросом, а также снабжен коробом, закрепленным на беспилотном летательном аппарате со стороны хвостовой части через устройство крепления короба, выполненное с возможностью расфиксации его крепления, и устройством крепления конечного участка троса в зоне верхней точки поверхности хвостовой части, выполненным с возможностью расфиксации крепления, при этом купол, стропы и начальный участок троса упакованы в короб, а конечный участок троса закреплен в устройстве его крепления.

Отличительными признаками предлагаемого беспилотного летательного аппарата является то, что беспилотный летательный аппарат снабжен тормозным парашютом, содержащим купол, трос и стропы, соединяющие купол с тросом, а также снабжен коробом, закрепленным на беспилотном летательном аппарате со стороны хвостовой части через устройство крепления короба, выполненное с возможностью расфиксации его крепления, и устройством крепления конечного участка троса в зоне верхней точки поверхности хвостовой части, выполненным с возможностью расфиксации крепления, при этом купол, стропы и начальный участок троса упакованы в короб, а конечный участок троса закреплен в устройстве его крепления.

Благодаря наличию указанных отличительных признаков в совокупности с известными, достигается уменьшение времени выхода БПЛА на высотную траекторию полета и запаса топлива, необходимого для работы разгонной двигательной установки, а также уменьшение массы БПЛА в целом перед запуском разгонной двигательной установки.

Предложенное техническое решение может найти применение в авиации, например, для запуска спутников связи или мониторинга поверхности, исследовательских аппаратов для изучения космических объектов, потоков космических излучений, состояния верхних слоев атмосферы.

Устройство и его работа поясняются чертежами, фиг. 1 - фиг. 6.

На фиг. 1 представлено устройство БПЛА, выводимого на высотную траекторию полета.

На фиг. 2 показано положение БПЛА в автономном полете после отделения от самолета-носителя при стабилизации его положения при торможении обтекающим потоком воздуха и расфиксации устройства крепления короба.

На фиг. 3 показано положение БПЛА в автономном полете после удаления от самолета-носителя на безопасное расстояние для выведения на высотную траекторию полета перед расфиксацией крепления конечного участка троса парашюта и включениием реактивного двигателя создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести беспилотного летательного аппарата.

На фиг. 4 показан вид фиг. 2 по стрелке А при случайном отклонении или колебаниях БПЛА по курсу на угол β, поясняющий формирование стабилизирующего момента Мβ от силы натяжения троса парашюта, противоположного направления, возвращающего БПЛА в исходное состояние.

На фиг. 5 показан виды фиг. 2 по стрелке А при случайном отклонении или колебаниях БПЛА по крену на угол γ (вращение вокруг продольной оси БПЛА) поясняющий формирование стабилизирующего момента Мγ от силы натяжения троса парашюта, противоположного направления, возвращающего БПЛА в исходное состояние.

На фиг. 6 показано положение БПЛА в автономном полете относительно самолета-носителя при запуске разгонной двигательной установки БПЛА.

Представленный на фиг. 1-6 БПЛА 1 содержит узлы крепления на пусковое устройство 2 самолета-носителя вдоль его фюзеляжа 3, состоящие из переднего упора 4, замковой ниши 5 для подъема БПЛА 1 и его крепления на пусковом устройстве 2, и заднего упора 6, разгонную двигательную установку 7, систему управления его положением в автономном полете, включающую блок 8 управления, сообщенный с устройством 9 стабилизации положения БПЛА 1 после отделения от пускового устройства 2, и с устройством 10 управления положением БПЛА 1 после запуска разгонной двигательной установки 7. БПЛА 1 снабжен полезной нагрузкой 11, импульсным реактивным двигателем 12, для создания импульса вращения вокруг поперечной оси, проходящей через центр 13 тяжести (ЦТ) БПЛА 1, с увеличением угла тангажа, и импульсным реактивным двигателем 14, для создания импульса компенсации вращения БПЛА 1 вокруг поперечной оси, проходящей через центр 13 тяжести. Пусковое устройство 2 содержит раздвижные элементы 15 для подъема БПЛА 1 и его крепления на пусковом устройстве 2 и выполнено с возможностью отделения БПЛА 1 от самолета-носителя в полете. БПЛА 1 снабжен тормозным парашютом, содержащим купол 16, стропы 17 и трос 18. Стропы 17 соединяют купол 16 с тросом 18. БПЛА 1 снабжен коробом 19, закрепленным со стороны хвостовой части БПЛА 1 через устройство 20 крепления короба 19, выполненное с возможностью расфиксации его крепления, и устройством 21 крепления конечного участка троса 18 в зоне верхней точки поверхности хвостовой части БПЛА 1, выполненным с возможностью расфиксации его крепления, при этом купол 16, стропы 17 и начальный участок троса 18 упакованы в короб 19, а конечный участок троса 18 закреплен в устройстве 21 его крепления.

БПЛА 1 работает следующим образом. Средствами подъема пускового устройства 2 (на чертежах не показаны) БПЛА 1 устанавливается на пусковое устройство 2 до контакта с передним и задним упорами 4 и 6, раздвижные элементы 15 фиксируются в замковой нише 5. Самолет-носитель выполняет полет к месту отцепки с подъемом на высоту отцепки. В месте отцепки расфиксируются раздвижные элементы 15 и БПЛА 1 под действием силы тяжести отделяется от пускового устройства 2. При необходимости, пусковое устройство 2 может содержать устройство отталкивания БПЛА 1 (на чертежах не показано). После отделения БПЛА 1, по команде блока 8 управления задействуется устройство 9, обеспечивая стабилизацию положения БПЛА 1 в автономном полете, при котором импульсный реактивный двигатель 12 располагается в нижней части БПЛА 1, а импульсный реактивный двигатель 14, соответственно, в верхней. При стабилизации положения БПЛА 1 расфиксируют устройство 20 крепления короба 19, что приводит к отделению от БПЛА 1 короба 19. Купол 16, его стропы 17 и начальный участок троса 18 оказываются в потоке воздуха, обтекающего БПЛА 1. Купол 16 раскрывается (см. фиг. 2), воспринимая динамическое давление обтекающего потока воздуха. Сила FП от динамического давления потока воздуха на купол 16 через стропы 17 и трос 18 передается в зону верхней точки поверхности хвостовой части БПЛА 1. Сила FП направлена в противоположную сторону от направления полета БПЛА 1 и создает дополнительное, по отношению к торможению БПЛА 1 обтекающим потоком воздуха, отрицательное ускорение, действующее на БПЛА 1 и дополнительно уменьшающее его скорость полета, по отношению к скорости самолета-носителя. Кроме того, сила FП благодаря действию в зоне верхней точки поверхности хвостовой части БПЛА 1 создает момент Мϑ вращения БПЛА 1 относительно его центра 13 тяжести, увеличивающий угол ϑ тангажа: Мϑ=FП*hϑ, где hϑ - плечо силы FП относительно центра 13 тяжести БПЛА 1 (см. фиг. 2), поэтому к моменту достижения необходимого расстояния (Lуд) удаления БПЛА 1 от самолета-носителя, обеспечивающего безопасность самолета-носителя при выведении БПЛА 1 на высотную траекторию полета, при запуске импульсного реактивного двигателя 12, БПЛА 1 располагается под предварительным углом ϑП тангажа (см. фиг. 3), поэтому для достижения значения угла ϑЗАП тангажа БПЛА 1, необходимого для запуска разгонной двигательной установки 7, импульсный реактивный двигатель 12, по сравнению с прототипом, обеспечивает увеличение угла тангажа БПЛА 1 на меньшую величину (ϑЗАП-ϑп), что обеспечивает уменьшение затрат топлива на увеличение угла тангажа, соответственно, уменьшаются и затраты топлива импульсного реактивного двигателя 14 создания импульса компенсации вращения БПЛА 1. Благодаря дополнительному уменьшению скорости полета БПЛА 1, по отношению к скорости самолета-носителя, уменьшается время достижения необходимого расстояния (Lуд) удаления БПЛА 1 от самолета-носителя, обеспечивающее безопасность самолета-носителя при выведении БПЛА 1 на высотную траекторию полета. Благодаря уменьшению времени достижения необходимого расстояния (Lуд, см. фиг. 3) удаления БПЛА 1 от самолета-носителя, уменьшается также и потеря высоты (АН) полета БПЛА 1, относительно высоты полета самолета-носителя, при включении импульсного реактивного двигателя 12 и, соответственно, при запуске разгонной двигательной установки 7, что обеспечивает уменьшение времени выведения БПЛА 1 на высотную траекторию полета, и необходимого для этого запаса топлива разгонной двигательной установки 7, уменьшение ее массы и массы БПЛА 1 в целом. Уменьшение массы БПЛА 1 обеспечивает его большее ускорение при действии силы тяги разгонной двигательной установки 7, что дополнительно уменьшает время выведения БПЛА 1 на высотную траекторию полета. Кроме того, при действии силы FП и случайном повороте или колебаниях БПЛА 1 по курсу на угол β (см. фиг. 4), сила FП, относительно центра 13 тяжести, действует на плечо hβ, создавая момент вращения Мβ=FП*hβ, противоположного направления, который возвращает БПЛА 1 в исходное состояние, обеспечивая стабилизацию БПЛА 1 по курсу. Аналогично, момент вращения противоположного действия формируется и при повороте БПЛА 1 по курсу в противоположном направлении (на угол минус β). При действии силы FП и случайном повороте или колебаниях БПЛА 1 по крену вокруг его продольной оси на угол γ (см. фиг. 5), точка приложения силы FП смещается относительно вертикальной плоскости, при этом трос 18 располагается под углом к ней и сила FП раскладывается на продольную составляющую (FП-ПР) и боковую составляющую (FП-Б). Боковая составляющая FП-Б, относительно центра 13 тяжести, действует на плече hγ, создавая момент вращения Мγ=FП-Б*hγ, противоположного действия, который возвращает БПЛА 1 в исходное состояние, обеспечивая стабилизацию БПЛА 1 по крену. Аналогично, момент вращения противоположного действия формируется и при повороте БПЛА 1 по крену в противоположном направлении (на угол минус γ). Благодаря стабилизации БПЛА 1 по курсу и крену уменьшается запас топлива, необходимый для работы устройства 9 стабилизации положения БПЛА 1 от момента его отделения от пускового устройства 2 до достижения необходимого расстояния Lуд. После достижения необходимого расстояния Lуд удаления БПЛА 1 от самолета-носителя блок 8 управления задействует расфиксацию устройства 21 крепления конечного участка троса 18 и импульсный реактивный двигатель 12, который обеспечивает увеличение угла тангажа БПЛА 1. В процессе увеличение угла тангажа БПЛА 1 до необходимого значения ϑЗАП (фиг. 6) по сигналам блока 8 управления задействуется импульсный реактивный двигатель 14, обеспечивая компенсацию импульса вращения БПЛА 1 вокруг поперечной оси, проходящей через ЦТ 13, а после уменьшения угловой скорости вращения БПЛА 1 выполняется запуск разгонной двигательной установки 7.

Беспилотный летательный аппарат, содержащий узлы для крепления на пусковое устройство самолета-носителя вдоль фюзеляжа, выполненное с возможностью его отделения в полете, разгонную двигательную установку, систему управления его положением в автономном полете, полезную нагрузку, а также импульсные реактивные двигатели для создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести беспилотного летательного аппарата, с увеличением угла тангажа, и компенсации этого импульса вращения, отличающийся тем, что снабжен тормозным парашютом, содержащим купол, трос и стропы, соединяющие купол с тросом, а также снабжен коробом, закрепленным на беспилотном летательном аппарате со стороны хвостовой части через устройство крепления короба, выполненное с возможностью расфиксации его крепления, и устройством крепления конечного участка троса в зоне верхней точки поверхности хвостовой части, выполненным с возможностью расфиксации крепления, при этом купол, стропы и начальный участок троса упакованы в короб, а конечный участок троса закреплен в устройстве его крепления.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к способам запуска беспилотных летательных аппаратов с самолетов-носителей. Способ выведения БПЛА на высотную траекторию полета включает снабжение беспилотного летательного аппарата разгонной двигательной установкой, системой управления его положением в автономном полете, полезной нагрузкой, импульсными реактивными двигателями создания импульса вращения вокруг поперечной оси, проходящей через центр тяжести БПЛА, и компенсации этого импульса вращения, тормозным парашютом, уложенным в коробе.

Изобретение относится к области авиации, в частности к комплексам противокорабельной и противолодочной обороны. Палубная авиационная разведывательно-ударная система включает опционально и дистанционно пилотируемые самолеты-вертолеты интегральной компоновки, включающей крыло тандемной схемы, имеющее первое стреловидное и второе трапециевидное крылья (ПСК и ВТК).

В первом варианте пилотируемый либо беспилотный разгонный самолет-носитель включает центральный модуль фюзеляжа обтекаемой интегральной формы, шасси, комбинированную силовую установку из реактивных двигателей, интегрированную систему управления с элементами реактивной системы управления, несущие консоли крыльев с элементами механизации, системы активной и пассивной тепловой защиты наружных элементов конструкций.

Изобретение относится к средствам военной техники, в частности к конструкциям ракетных комплексов. Авиационный ракетный комплекс с беспилотным ударным самолетом-вертолетом включает платформу, содержащую стартовую станцию, энергетическую установку и блок управления полетом беспилотной многовинтовой системы (БПМС).

Изобретение относится к области сельскохозяйственного машиностроения. Воздухоплавательный роботизированный аппарат (1) для мониторинга и внесения средств защиты растений и удобрений в точном земледелии содержит два жестких дирижабля (2 и 3) в виде остовов (4 и 5) с оболочками (6 и 7).

Изобретение относится к беспилотным летательным аппаратам (БПЛА). БПЛА содержит узлы для крепления на пусковое устройство самолета-носителя вдоль фюзеляжа, систему стабилизации его положения и управления в автономном полете, полезную нагрузку и разгонный двигатель, кроме того, снабжен импульсными реактивными двигателями для создания импульса вращения вокруг горизонтальной оси, проходящей через центр тяжести БПЛА, и компенсации этого импульса вращения.

Изобретение относится к области бесконтактных способов ведения боевых действий. Способ бесконтактного ведения боевых действий включает этап осуществления разведывательных действий, этап подготовки сил и средств для нанесения поражения разведанных объектов противника и этап доставки с использованием ракетоносцев-доставщиков в зону поражающего радиуса действия вооружения для уничтожения разведанных целей противника.

Изобретение относится к области авиации, в частности к конструкциям и способам применения беспилотных летательных аппаратов для борьбы с морскими целями. Беспилотный самолет-вертолет-ракетоносец (БСВР) содержит фюзеляж, несущее крыло с хвостовым оперением, двигатель, бортовую систему управления (БСУ), обеспечивающую автономное (АУ) и дистанционное управление с командного пункта, бортовой источник питания.

Изобретение относится к области авиации, в частности к системам запуска летательных аппаратов (ЛА) самолетной схемы. Способ старта и подъема летательного аппарата самолетного типа включает размещение ЛА и фиксацию в стартовой конфигурации со сложенным крылом внутри ракетной стартово-разгонной ступени (СРС), после старта связку СРС-ЛА выводят на высоту 0,5…25,0 км начала целевого функционирования ЛА.

Изобретение относится к сверхзвуковой авиации. Самолет содержит фюзеляж прямоугольного сечения со сквозным продольным каналом с установленными внутри реактивными двигателями.
Наверх