Способ упрочнения режущей кромки диска сошника

Изобретение относится к машиностроительным технологиям поверхностного упрочнения деталей сельскохозяйственных машин, в частности к способам упрочнения режущей кромки дисковых сошников. Способ упрочнения режущей кромки диска сошника включает электромеханическую обработку упрочняющим инструментом, который перемещают по комбинированной траектории, при этом механическое воздействие упрочняющего инструмента на поверхность диска составляет 100-300 Н, а термическое воздействие осуществляют при увеличении силы тока на инструменте от 800 до 1200 А и при напряжении 1-4 В с обеспечением упрочнения на глубину 0,1-1,0 мм и достижением твердости не менее 50±2 HRC. Способ обеспечивает формирование на поверхности режущей кромки лезвия дискового сошника упрочненного слоя, обладающего повышенной износостойкостью. 4 ил.

 

Изобретение относится к машиностроительным технологиям поверхностного упрочнения деталей сельскохозяйственных машин, в частности, для упрочнения режущей кромки, например, дисковых сошников.

Известен способ упрочнения поверхностей термообработанных стальных деталей, где включены операции электроэрозионного легирования и ионного азотирования, при этом операцию электроэрозионного легирования выполняют графитовым электродом по меньшей мере в два этапа со снижением энергии разряда на каждом последующем этапе, причем первый этап легирования графитовым электродом проводят с энергией разряда 0,1-6,4 Дж и производительностью 0,2-4,0 см2/мин, а второй этап легирования графитовым электродом проводят с энергией разряда 0,1-2,83 Дж и производительностью 0,2-2,0 см2/мин [RU 2603932 C1, С23С 28/04 (2006.01), С23С 8/38 (2006.01), В23Н 5/00 (2006.01), 10.12.2016].

Существенным недостатком способа является низкая производительность процесса из-за увеличения этапов упрочнения деталей.

Известен способ восстановления высевающего диска для пневматического высевающего аппарата, включающий операции восстановления двух сторон высевающего диска с износом до 0,1-0,15 мм путем нанесения износостойкого покрытия проведением электроискровой обработки с получением слоя, толщина которого компенсирует износ с учетом припуска на последующую обработку и последующих механической обработки до получения шероховатости поверхности Ra=0,8-1,5 мкм, безабразивной ультразвуковой финишной обработки до получения шероховатости поверхности Ra=0,025-0,036 мкм и нанесения алмазоподобного тонкослойного покрытия 0,5-3 мкм на основе оксикарбида кремния [RU 2510318 С2, В23Р 6/00 (2006.01), В23Н 9/00 (2006.01), 27.03.2014].

Существенным недостатком способа является низкая производительность процесса из-за упрочнения двух сторон, а не одной.

Известен способ нанесения износостойкого покрытия на рабочую поверхность почворежущей детали почвообрабатывающей машины, имеющей форму диска, включающий дуговую наплавку точек износостойким присадочным материалом большей плотности, чем основной металл детали, расположенных на расстоянии друг от друга вдоль линий армирования, параллельных режущей кромки детали до линии армирования лезвийной поверхности устанавливают равным ширине заточки рабочей грани, имеющей напряжения сжатия, а расстояния между параллельными линиями армирования не более трех диаметров точек износостойкого материала, при этом точки износостойкого материала толщиной слоя 2-4 мм располагают на расстоянии друг от друга с обеспечением перекрытия в шахматном порядке [RU 2640515 C1, В23Р 6/00 (2006.01), В23К 13/01 (2006.01), 09.01.2018].

Существенным недостатком способа является большая вероятность появления трещин в процессе обработки и необходимость в точном оборудовании.

Известен способ упрочнения лезвийной поверхности детали, включающий нанесение на тыльную часть лезвия упрочняющей шихты, нагрев ее токами высокой частоты и деформирования затвердевшего упрочняющего слоя в формообразующем штампе с одновременной оттяжкой лезвия, выполнение предварительно на тыльной части лезвия, наносят путем электроискрового легирования спеченный вольфрамокобальтовый сплав, в качестве упрочняющей шихты используют шихту, содержащую, масса %: карбид бора 72-82, силикокальций 5-9, флюс П-0,66 остальное, при этом наносят ее слоем толщиной 0,8-2,5 мм, а при деформировании упрочняющего слоя осуществляют его вдавливание в лезвийную поверхность на глубину, равную его толщине, после чего деталь выдерживают при температуре 450-600°С в течение от 2 до 5 часов, а затем охлаждают на воздухе [RU 2697747 С2, В23К 9/04 (2006.01), С23С 26/00 (2006.01), В23Р 6/00 (2006.01), А01В 15/02 (2006.01), 18.07.2017].

Существенным недостатком способа является высокая трудоемкость и низкая производительность.

Наиболее близким к заявляемому техническому решению является способ упрочнения рабочих поверхностей дискового ножа, включающий термическую обработку, выполнение после термической обработки нагрева ножа до 90-110°С и проведение алмазного выглаживания торцевых поверхностей ножа со скоростью 35-48 м/мин алмазным наконечником со сферическим концом, радиус сферы которого 1,5 мм, с силой выглаживания 250 Н при продольной подаче 0,04 мм/об. Алмазное выглаживание осуществляют по кольцеобразным дорожкам, расположенным на торцевых поверхностях ножа и прилегающим к поверхности наружного диаметра кольца, термическую обработку ведут путем закалки с последующим низким отпуском до достижения твердости поверхности ножа 48-58 HRC [RU 2183681 C1, C21D 9/24 (2000.01), B23D 61/02 (2000.01), B23D 19/04 (2000.01), 20.06.2002].

Существенным недостатком способа является потребность в точном оборудовании и высокая трудоемкость.

Задача изобретения - формирование на поверхности режущей кромки лезвия дискового сошника упрочненного слоя, обладающего повышенной износостойкостью, снижение трудоемкости процесса обработки.

Это достигается благодаря тому, что упрочнение осуществляют путем электромеханической обработки одновременно при механическом и термическом воздействии упрочняющего инструмента движущегося по комбинированной траектории, состоящей из первого прохода по окружности на кромке лезвия, и последующих проходов по спиральной линии с незначительным взаимным перекрытием проходов до полного покрытия площади заточки лезвия диска. Механическое воздействие упрочняющего инструмента на поверхность диска составляет 100…300 Н, а термическое воздействие осуществляют при ступенчатом увеличении силы тока на инструменте от 800 до 1200 А с интервалом в зависимости от количества проходов, при напряжении 1…4 В, обеспечивая упрочнение на глубину 0,1…1,0 мм с достижением твердости не менее 50±2 HRC.

На фиг. 1 представлен общий вид диска сошника 1 с лезвием 2. На фиг. 2 показано сечение А-А лезвия 2 диска 1 с указанием усилия воздействия F при упрочнении, направленного перпендикулярно к лезвию, и следы проходов при упрочнении. На фиг. 3 показан выносной элемент A1 лезвия 2 диска 1 по фиг. 2 с представлением следов проходов при упрочнении 3 шириной с и указанием взаимных перекрытий 4 шириной к. На фиг. 4 представлен выносной элемент диска сошника 1 по фиг. 1 с указанием лезвия 2 шириной b, на котором показана комбинированная траектория движения упрочняющего инструмента, состоящая из первого прохода 5 по окружности и последующих проходов 6 по спиральной линии.

Механическое воздействие при обработке обеспечивает надежный контакт инструмента с упрочняемой поверхностью лезвия диска сошника. Термическое воздействие с учетом ступенчатого возрастания силы тока на инструменте при обработке создает местный нагрев материала диска выше критических точек, обеспечивая закалку. Низкое напряжения при обработке диска инструментом делает безопасным применение электрического тока в технологическом процессе. В результате при одновременном механическом и термическом воздействии глубина упрочненной поверхности достигает 0,1…1,0 мм с образованием твердости поверхностного слоя не ниже 50±2 HRC, что обеспечивает равномерное формирование износостойкого упрочненного слоя на режущей кромки диска сошника и снижение трудоемкости процесса обработки.

Источники информации

1. RU 2603932 C1, С23С 28/04 (2006.01), С23С 8/38 (2006.01), В23Н 5/00 (2006.01), 10.12.2016;

2. RU 2510318 C2, B23P 6/00 (2006.01), B23H 9/00 (2006.01), 27.03.2014;

3. RU 2640515 C1, B23P 6/00 (2006.01), В23К 13/01 (2006.01), 09.01.2018;

4. RU 2697747 C2, В23К 9/04 (2006.01), C23C 26/00 (2006.01), B23P 6/00 (2006.01), A01B 15/02 (2006.01), 18.07.2017;

5. RU 2183681 C1, C21D 9/24 (2000.01), B23D 61/02 (2000.01), B23D 19/04 (2000.01), 20.06.2002.

Способ упрочнения режущей кромки диска сошника, включающий ее электромеханическую обработку упрочняющим инструментом, отличающийся тем, что упрочняющий инструмент перемещают по комбинированной траектории, состоящей из первого прохода по окружности на кромке лезвия и последующих проходов по спиральной линии с взаимным перекрытием проходов до полного покрытия площади заточки лезвия диска, при этом механическое воздействие упрочняющего инструмента на поверхность диска составляет 100-300 Н, а термическое воздействие осуществляют при увеличении силы тока на инструменте от 800 до 1200 А и при напряжении 1-4 В с обеспечением упрочнения на глубину 0,1-1,0 мм и достижением твердости не менее 50±2 HRC.



 

Похожие патенты:

Изобретение относится к области электрофизических методов нанесения покрытий на переходные металлы IV-VI групп и сплавов на их основе с формированием покрытия толщиной до 200 мкм, содержащего карбиды, углерод в виде включений в объеме покрытия и углеродный слой на поверхности.

Изобретение относится к области машиностроения и может быть использовано при удалении заусенцев и формировании острых кромок на поверхности пазов в детали. Электрод-щетка, выполненный в форме кисточки, содержит державку и токопроводящую рабочую часть в виде вращающегося пучка из металлической проволоки.

Изобретение относится к области машиностроения и может быть использовано при одновременном изготовлении группы отверстий в металлической детали. Способ включает прошивку отверстий в детали при подаче жидкой рабочей среды в межэлектродный зазор с непрерывным анодным растворением припуска, осуществляемую с помощью электродов-инструментов, количество которых соответствует количеству одновременно прошиваемых отверстий.
Изобретение относится к упрочнению поверхностей деталей, работающих в условиях интенсивного абразивного изнашивания, которое может быть использовано при производстве и восстановлении деталей машин с заданными физико-механическими свойствами режущей поверхности.

Изобретение относится к обработке материалов и может быть использовано для легирования и упрочнения различных деталей машин и инструментов. Способ включает нанесение легирующего покрытия и упрочнение обкаткой поверхностного слоя детали, которые осуществляют одновременно путем обкатки поверхности детали с помощью ролика, установленного в подпружиненной державке, закрепленной в резцедержателе станка, при этом деталь закреплена в шпинделе станка для придания ей вращения, а к детали и ролику подведен электрический ток.

Изобретение относится к электрохимической размерной обработке и может быть использовано для получения рельефного изображения на металлической поверхности изделий, например, при изготовлении неглубоких пресс-форм, матриц для тиснения, печатных форм, печатных плат и для маркирования деталей.

Изобретение относится к идентификации материальных ресурсов, выполненных из электропроводящих материалов. Способ включает нанесение на электропроводящий объект координатной сетки с идентификационным номером и индивидуальной неповторимой матрицы, получаемой электрохимическим воздействием между объектом и электродом, подключенным к низковольтному источнику тока с введением лазерного излучения через стеклянную подложку и полупрозрачную металлическую пленку в межэлектродный промежуток.

Изобретение относится к области машиностроения и может быть использовано для упрочнения поверхностей металлических деталей, например пар трения. Способ эрозионно-лучевого упрочнения поверхности металлической детали включает одновременное электроэрозионное нанесение с помощью электрода-инструмента на поверхность детали гранул износостойкого сплава, нанесение микропорошка вязкого материала слоем, толщина которого не превышает размеров упомянутых гранул, и оплавление микропорошка путем лучевого нагрева.

Изобретение относится к способу восстановления частично удаленного упрочненного ионным азотированием слоя стальной детали. Проводят электроэрозионное легирование графитовым электродом (ЦЭЭЛ) с энергией разряда, при которой зона термического влияния при легировании не превышает толщины остатка поверхностного слоя стальной детали, упрочненного упомянутым ионным азотированием.

Изобретение относится к области машиностроения и может быть использовано при нанесении искусственной шероховатости на поверхности деталей, используемых в аэрокосмической отрасли, в частности на прямых участках каналов охлаждения теплонагруженной детали - оболочки, входящей в состав камеры сгорания ракетного двигателя.
Наверх