Способ проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии



Способ проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии
Способ проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии

Владельцы патента RU 2728488:

Федеральное государственное бюджетное образовательное учреждение высшего образования Новосибирский государственный архитектурно-строительный университет (Сибстрин) (RU)

Изобретение относится к области строительства, в частности для реализации косвенного температурного контроля, может быть использовано во время проведения мониторинга состояния температуры бетонной смеси, при изготовлении железобетонных конструкций. Предложен способ для проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии, в котором измерения производятся бесконтактным способом. Данные снимаются ИК-пирометром с теплопроводящего элемента, который интегрирует значения температур в контактных зонах, предварительно установленного на элемент опалубочной системы, до заливки бетонной смеси. Внешний торец закрывается защитной накладкой. Технический результат - повышение точности получаемых данных, обеспечение применения способа измерения на различных видах опалубочных конструкций. 1 ил.

 

Изобретение относится к области строительства в частности для реализации косвенного температурного контроля, может быть использовано во время проведения мониторинга состояния температуры бетонной смеси, при изготовлении железобетонных конструкций.

Известен «Способ измерения температурного поля в помещении и устройство для его осуществления» (патент РФ №2604267, 2016 г., G01K 13/00, G01J 5/10), при котором измерения в контрольных точках, осуществляются бесконтактным способом, с помощью пирометра, измеряющего температуру газовой среды по температуре поверхности датчика и формирующего в течение долей секунды значение температуры в виде числа, передаваемого в вычислительное устройство.

Однако данный способ контроля невозможно использовать в условиях строительства, в первую очередь из-за передачи данных от пирометра в ЭВМ, это усложняет процедуру проведения теплового контроля. Контрольную точку невозможно установить на опалубочных конструкциях.

Наиболее близким по технической сущности заявляемому изобретению, является «Методика контроля качества зимнего бетонирования» НТЦ «ЭТЭКА» описанная в стандарте СТ-СРО ТС-01-2019 «Температурно-прочностной контроль бетона при возведении монолитных контракций в зимний период», при которой сбор данных с контрольных точек, происходит при помощи температурных датчиков. Контрольная точка может устанавливаться на любых видах опалубочным конструкций. Данная методика имеет низкую скорость сбора данных, за счет необходимости постоянной адаптации переводных коэффициентов под условия строительной площадки, а так же данный способ так же имеет высокие погрешности, вследствие непосредственного измерения температуры опалубки, и дальнейшего перевода значений с помощью коэффициентов, рассчитанных заранее, которые не удовлетворяют динамически сменяющимся условиям на строительной площадке.

Задачей заявляемого изобретения является повышение точности температурного мониторинга, при снижении трудоемкости процесса измерения температуры в контрольных точках.

Поставленная задача решается тем, что в способе проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии, при котором измерения производятся бесконтактным способом, согласно изобретению, данные снимаются ИК-пирометром с теплопроводящего элемента, который интегрирует значения температур в контактных с ним зонах, предварительно установленного на элемент опалубочной системы, до заливки бетонной смеси, причем внешний торец закрывается защитной накладкой.

Для увеличения точности получаемых данных, применяемый теплопроводящий стержень, интегрирует значения температур в контактных зонах с ним, усредняет их, на торце данного элемента располагается температура, соответствующая температуре бетонной смеси, окружающей его.

Для увеличения скорости сбора данных с контрольных точек, применяется ИК-пирометр, что исключает необходимость постоянной коммутации «датчик-регистрационный прибор», которая более длительна, по сравнению с суммой времени, затрачиваемой на сумму действий по удалению защитной накладки, визированию луча ИК-пирометра на торец стержня, восстановлению защитной накладки.

На фиг. 1 представлен общий вид устройства контрольной точки, для осуществления способа проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии на чертеже.

Устройство контрольной точки содержит теплопроводящий элемент 1, защитную накладку 2, элемент опалубки 3, бетонная смесь 4.

Способ осуществляется следующим образом. После монтажа опалубочной системы, до выполнения заливки бетонной смеси 4, монтируется теплопроводящий элемент 1, в заранее подготовленное технологическое отверстие в элементе опалубки 3, на торец, выходящий на поверхность элемента опалубки 3, монтируется защитная накладка 2, с возможностью смещения, для проведения контрольного измерения. Торец теплопроводящего элемента 1, выходящий на поверхность элемента опалубки 3, имеет температуру, соответствующую температуре бетонной смеси, вокруг теплопроводящего элемента 1. Луч визирования ИК-пирометра направляется перпендикулярно плоскости торца или в направлении оси теплопроводящего элемента 1. Измеряется температура бетонной смеси 4 с одной или с требуемого количества точек, определяемых технологией проведения бетонных работ. После проведения распалубливания конструкций теплопроводящий элемент 1 отпиливается или загибается. Применение защитных накладок 2 обусловлено тем, что необходимо защитить поверхность торца теплопроводящего стержня 1 от воздействия внешних температурных изменений. Контроль температуры в бетонной смеси осуществляется следующим образом: теплопроводящий элемент 1, имея большую теплопроводность, чем бетонная смесь 4, интегрирует все значения температур в контактных зонах с ним, усредняет их.

Использование заявляемого изобретения позволяет получать высокую точность данных, применить способ измерения на различных видах опалубочных конструкций, снизить трудоемкость монтажа контрольных точек и трудозатраты при проведении температурного мониторинга.

Способ проведения косвенного температурного контроля бетонной смеси при изготовлении железобетонных конструкций с использованием инфракрасной пирометрии, при котором измерения производятся бесконтактным способом, отличающийся тем, что данные снимаются ИК-пирометром с теплопроводящего элемента, предварительно установленного на элемент опалубочной системы, до заливки бетонной смеси, причем внешний торец закрывается защитной накладкой.



 

Похожие патенты:

Изобретение относится к биотехнологии, в частности к молекулярной онкологии. Способ включает: выделение внеклеточной ДНК из плазмы крови, определение копийности генов BRCA2 и RAD50 относительно референсного гена GAPDH методом ПЦР-РВ в присутствии красителя EVA-Green и высокоспецифичных праймеров, сравнение полученных значений rC с интервалами копийности rCBRCA2 и rCRAD50, характерными для радиорезистентной или чувствительной к лучевой терапии формы рака предстательной железы.

Изобретение относится к области биохимии, в частности к грызуну для экспрессии гуманизированного полипептида CD47, к его клетке, ткани и эмбриону, а также к способу получения указанного грызуна.

Изобретение относится к медицине, а именно к медицинской диагностике, трансплантологии, и может быть использовано для выявления инфицирования почечного трансплантата герпесвирусами путем определения концентрации вирусной ДНК методом полимеразной цепной реакции в моче пациента.

Группа изобретений относится к области медицины, а именно к способу определения степени гидродинамической активации фактора фон Виллебранда и устройству для осуществления данного способа.

Настоящее изобретение относится к области биотехнологии, конкретно к пептидным калиевым сенсорам, и может быть использовано для детекции положительно заряженных ионов калия.

Группа изобретений относится к устройствам обнаружения газа и способу установки узла фильтра. Устройство (100) обнаружения газа содержит модуль датчика газа, сконфигурированный с возможностью обнаружения газа, и узел (106) фильтра.

Изобретение относится к области биотехнологии, конкретно к способу обнаружения злокачественной клетки в образце, включающему определение уровней экспрессии 5-HTR1A и/или 5-HTR1B, и может быть использовано в медицине.

Изобретение относится к области металлургии. Для достижения заданных механических свойств листовой стали в режиме реального времени способ динамического регулированияе изготовления термообработанной листовой стали, имеющей химический состав и микроструктуру mtarget, содержащую от 0 до 100% по меньшей мере одной фазы, выбранной из: феррита, мартенсита, бейнита, перлита, цементита и аустенита включает: А.

Изобретение относится к устройству формования образцов из тампонажного раствора, применяемого при цементировании нефтяных и газовых скважин. Разборный контейнер состоит из днища, крышки, стенок и ручки, закрепленной на крышке.

Изобретение относится к медицине, а именно к акушерству и гинекологии, и может быть использовано для диагностики спленомегалии у плода. Для этого проводят антенатальное УЗИ селезенки.

Изобретение относится к устройству формования образцов из тампонажного раствора, применяемого при цементировании нефтяных и газовых скважин. Разборный контейнер состоит из днища, крышки, стенок и ручки, закрепленной на крышке.
Наверх