Способ настройки преобразователя частоты лазерного излучения в третью гармонику



Способ настройки преобразователя частоты лазерного излучения в третью гармонику
Способ настройки преобразователя частоты лазерного излучения в третью гармонику
G02F2001/354 - Приборы или устройства для управления интенсивностью, цветом, фазой, поляризацией или направлением света, оптические функции,которых изменяются при изменениия оптических свойств среды в этих приборах или устройствах например для переключения, стробирования, модуляции или демодуляции ; оборудование или технологические процессы для этих целей; преобразование частоты; нелинейная оптика; оптические логические элементы; оптические аналого-дискретные преобразователи (средства оптической передачи сигнала между чувствительным элементом и индикаторным или записывающим устройством совместно с измерением G01D 5/26; устройства, в которых математические операции выполняются оптическими элементами G06E 3/00; системы для передачи электрических сигналов с использованием оптических средств для преобразования входного сигнала G08C 19/36; запись информации с помощью электрических или магнитных средств и
G02F1/353 - Устройства или приспособления для управления интенсивностью, цветом, фазой, поляризацией или направлением света, исходящего от независимого источника, например для переключения, стробирования или модуляции; нелинейная оптика (термометры с использованием изменения цвета или прозрачности G01K 11/12; с использованием изменения параметров флуоресценцией G01K 11/32; световоды G02B 6/00; оптические устройства или приспособления с использованием подвижных или деформируемых элементов для управления светом от независимого источника G02B 26/00; управление светом вообще G05D 25/00; системы визуальной сигнализации G08B 5/00; устройства для индикации меняющейся информации путем выбора или комбинации отдельных элементов G09F 9/00; схемы и устройства управления для приборов

Владельцы патента RU 2728491:

Федеральное государственное унитарное предприятие "Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" (ФГУП "РФЯЦ-ВНИИЭФ") (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") (RU)

Изобретение относится к нелинейным преобразователям частоты лазерного излучения. Способ настройки преобразователей частоты (ПЧ) лазерного излучения (ЛИ) в третью гармонику обеспечивает настройку ПЧ в два этапа. На первом этапе кристалл-преобразователь частоты настраивают по азимутальному углу, добиваясь необходимого значения угла между главной плоскостью кристалла и направлением поляризации рабочего ЛИ. На втором этапе предварительно определяют точный абсолютный угол синхронизма и закрепляют полученный угол за данным кристаллом-преобразователем, после чего производят настройку ПЧ на этот угол синхронизма относительно направления падающего на ПЧ рабочего ЛИ. Измерение угла синхронизма производят геодезическим способом. Технический результат заключается в обеспечении возможности использования для преобразования ЛИ в третью гармонику неоптимизированных для этого ПЧ, сохраняя при этом высокую точность выставления как малых, так и больших углов настройки синхронизма. 2 ил.

 

Изобретение относится к нелинейным преобразователям частоты (ПЧ) лазерного излучения (ЛИ) и касается вопросов настройки ПЧ для преобразования ЛИ в третью гармонику.

Известен способ настройки ПЧ на лазерной установке Nova без получения значения абсолютных углов настройки [М.А. Summers, L.G. Seppala, F. Rienecker, D. Eilmerl, B.C. Johnson, "Nova Frequency Conversion System", Lawrence Livermore National Laboratory, Livermore, UCRL-86009, October 28. Prepared for submittal to 9th Symposium on Engineering Problems of Fusion Research, Chicago, Illinois]. К недостаткам этого способа настройки кристаллов для преобразования ЛИ в третью гармонику относится отсутствие на многих других лазерных установках задающего генератора, способного работать в импульсно-периодическом режиме, позволяющем произвести такую настройку.

Наиболее близким к заявляемому является способ настройки конвертора (ПЧ) лазерного излучения в третью гармонику, который применяется для американской многоканальной лазерной установки NIF [Wegner P., Auerbach J., Biesiada Т., Dixit S., Lawson J., et all - NIF final optics system: frequency conversion and beam conditioning. - SPIE Photonics West, San Jose, California, January 24 - 29, 2004]. Кристаллы преобразователя частоты и финальная линза на установке NIF закрепляются в единую монолитную алюминиевую конструкцию (final optics cell). Все элементы ячейки и элементы их крепления сделаны с большой точностью (угловая ошибка каждого элемента не превышает 10 мкрад). Настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения. При настройке каждая ячейка с помощью трех активаторов поворачивается так, чтобы отраженный от кристалла удвоителя луч составлял угол 1.16 мрад относительно падающего. Настройка производится по изображению CCD-камеры, установленной в фокусе выходной линзы транспортного пространственного фильтра (ТПФ) на небольшом расстоянии от центра диафрагмы ТПФ. Описанный способ настройки предполагает практически идеальное изготовление кристаллов преобразователя частоты с точки зрения ориентации оптической оси относительно их поверхности. Для решения этой задачи на установке NIF разработана специальная система CATS - Crystal Alignment Test System [Hunt J.T. - National Ignition Facility Performance Review 1999. - LLNL Report UCRL-ID-138120-99, 2000, 313 p]. Она позволяет провести прецизионное измерение угла синхронизма каждого нового выращенного кристалла по отношению с образцовым кристаллом с точно известным расположением осей. Далее разница между кристаллами устраняется при алмазном фрезеровании нового кристалла. Оптимизированные таким способом кристаллы имеют высокую стоимость, а метод настройки не универсален и подходит с удовлетворительной точностью для ПЧ с небольшими углами настройки, при этом невозможно осуществление настройки для больших углов.

Техническая проблема, решаемая изобретением, состоит в обеспечении возможности настройки неоптимизированных преобразователей частоты.

Технический результат состоит в технологическом упрощении процесса настройки ПЧ с обеспечением удовлетворительной точности настройки, как для небольших, так и для больших углов.

Данный технический результат достигается за счет того, что в отличие от известного способа настройки преобразователя частоты (ПЧ) лазерного излучения в третью гармонику, заключающегося в том, что настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения, в предложенном способе используют ПЧ неоптимизированной геометрии, обеспечивают настройку ПЧ в два этапа, для чего сначала на первом этапе выставляют ПЧ под углом к направлению поляризации падающего на ПЧ излучения, после чего на втором этапе настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения, причем на первом этапе для выставления ПЧ под углом к направлению поляризации осуществляют азимутальную настройку, для чего предварительно задают положение реперных полос на экране, и далее выставление ПЧ под углом к направлению поляризации лазерного излучения обеспечивают оптически при пропускании лазерного излучения через ПЧ путем получения на экране интерференционных полос и путем вращения ПЧ задания их положения относительно реперных полос на экране, об азимутальной настройке судят по параллельности интерференционных и реперных полос на экране, после обеспечения параллельности интерференционных и реперных полос на экране на первом этапе, на втором этапе предварительно определяют точный абсолютный угол синхронизма, после чего настройку ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения производят геодезически, о точности настройки ПЧ лазерного излучения в третью гармонику судят по совпадению углового положения максимума генерации гармоники с направлением настроенного на угол синхронизма падающего на ПЧ лазерного излучения.

То есть, физическая основа способа состоит в том, что найден подход, позволяющий обеспечить условия для настройки неоптимизированных преобразователей частоты. Первый этап настройки (по азимутальному углу) позволяет определить и выставить положение главной плоскости кристалла относительно поляризации ЛИ без использования рабочего излучения лазерной установки, что технологически упрощает процесс настройки, исключая на этом этапе работу самой установки. Этот этап настройки необходим при работе с неоптимизированными кристаллами, т.к. в этом случае положение главной плоскости кристалла не сориентировано и требует настройки.

Новизна второго этапа в использовании геодезического метода настройки. Суть подхода в использовании автоколлимационного теодолита позволяющего измерить и настроить абсолютные углы синхронизма большой величины (кристаллы могут иметь углы настройки на синхронизм 10°-15°), обеспечивая ту же точность, что и для малых углов настройки (углы ~ единиц минут). То есть процесс настройки подстраивается под геометрию имеющегося кристалла, позволяет использовать данный кристалл для разных задач, например для преобразования как во вторую так и в третью гармоники без его доработки. В прототипе для каждой задачи с высокой точностью изготавливается отдельный кристалл, требующий дорогостоящей оптимизации. Таким образом, предложенный подход обеспечил возможность использования неоптимизированных кристаллов преобразователя и технологическое упрощение процесса настройки ПЧ с обеспечением удовлетворительной точности настройки для малых и больших углов.

На фиг. 1 схематично изображен стенд для настройки кристаллов по азимутальному углу ϕ, где 1 - собирающая линза, 2 - кристалл преобразователя частоты, 3 - призма Глана, 4 - собирающая линза, 5 - экран с повернутыми на угол ϕ относительно вертикали полосами.

На фиг. 2 приведена оптическая схема выставления угла для максимума синхронизма на канале установки, где 6 - усилитель лазерной установки, 2 - кристалл преобразователя частоты, 7 - автоколлимационный теодолит.

Для решения поставленной задачи предложен способ, реализованный следующим образом. Экспериментальный неоптимизированный образец кристалла (ПЧ) выставляется относительно поляризации ЛИ и определяются его углы настройки на синхронизм. Абсолютные углы настройки на синхронизм контролируются геодезическим методом, фиксируются за образцом кристалла и используются для его дальнейшей настройки в экспериментах по преобразованию ЛИ в третью гармонику.

Таким образом, полная настройка кристаллов происходит в два этапа.

Для настройки кристаллов по азимутальному углу ϕ (первый этап полной настройки) использовалась схема, приведенная на фиг. 1.

Параллельный пучок настроечного лазера (с длинной волны в видимом диапазоне) падает на линзу 1, далее сходящийся пучок проходит через кристалл преобразователя частоты 2 и анализатор 3, затем после линзы 4 параллельный пучок падает на экран с реперными полосами 5, который установлен таким образом, чтобы нанесенные на него линии составляли необходимый угол ϕ с вертикалью (т.к.в данном примере рабочее излучение лазера имеет вертикальную поляризацию).

Излучение, проходя через кристалл, меняет свое состояние поляризации, после анализатора на экране образуется система интерференционных полос, перпендикулярных главной плоскости кристалла. Вращая кристалл в азимутальном направлении по углу ϕ, добиваются совпадения полос. О настройке судят по степени параллельности интерференционных и реперных полос на экране.

Направление синхронизма в ПЧ при реализации определяли по общепринятой методике, облучая его конусом сходящихся лучей основной частоты с регистрацией на CCD-камеру полосы синхронизма генерируемой оптической гармоники и опорной метки [С.Е. Barker, D. Milan, R. Boyd "High Fluence Third Harmonic Generation", LLNL UCRL-LR-105821-93-2, Volume 3, Number 2, 1993, 55-62]. Угловое положение нелинейного элемента контролировалось относительно луча юстировочного лазера геодезическим способом. При выставлении кристаллов в угол синхронизма в эксперименте на генерацию третьей гармоники также используется метод, применяемый при измерении и контроле углов падения излучения на поверхность преобразователя частоты в опытах при определении направления синхронизма.

Оптическая схема геодезического метода выставления угла для направления фазового синхронизма с помощью автоколлимационного теодолита (второй этап полной настройки) показана на фиг. 2.

Автоколлимационный теодолит 7 устанавливается за кристаллом-преобразователем частоты 2 и выставляется на юстировочный луч лазерной установки. Направление луча измеряется непосредственно по теодолиту путем наблюдения котировочного луча в окуляр. Для снижения яркости луча, наблюдаемого в теодолите, до безопасного уровня используется специально изготовленная насадка для окуляра, состоящая из светофильтров, ослабляющих излучение юстировочного лазера. Теодолит устанавливается по уровням в горизонтальное рабочее положение. Далее находим изображение юстировочного луча, точно совмещаем с ним сетку нитей теодолита и берем отсчеты (при вертикальном и горизонтальном круге) углового положения юстировочного луча. Данные отсчеты являются для нас нулевыми. Относительно этого положения откладывается предварительно экспериментально измеренный угол положения кристалла для направления фазового синхронизма преобразователя с учетом температурной поправки. Производим корректировку положения кристалла с помощью микрометрических подвижек до совпадения штрихов собственной сетки нитей и коллимационного отражения. Теперь кристалл считается выставленным. Суммарная погрешность выставления кристалла с помощью описанного метода не превышает ±17 угловых секунд (82 мкрад). И эта погрешность сохраняется как для углов настройки менее 1°, так и для больших углов ~ 10°-15°. Как результат, предложенный подход обеспечил возможность использования неоптимизированных кристаллов преобразователя и технологическое упрощение процесса настройки ПЧ с обеспечением удовлетворительной точности настройки для малых и больших углов.

Способ настройки преобразователя частоты лазерного излучения в третью гармонику, заключающийся в том, что настраивают преобразователь частоты (ПЧ) на угол синхронизма относительно направления падающего на ПЧ лазерного излучения, отличающийся тем, что

- используют ПЧ неоптимизированной геометрии,

- обеспечивают настройку ПЧ в два этапа, для чего сначала на первом этапе выставляют ПЧ под углом к направлению поляризации падающего на ПЧ излучения, после чего на втором этапе настраивают ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения,

- причем на первом этапе для выставления ПЧ под углом к направлению поляризации осуществляют азимутальную настройку, для чего предварительно задают положение реперных полос на экране, и далее выставление ПЧ под углом к направлению поляризации лазерного излучения обеспечивают оптически при пропускании лазерного излучения через ПЧ путем получения на экране интерференционных полос и путем вращения ПЧ задания их положения относительно реперных полос на экране, об азимутальной настройке судят по параллельности интерференционных и реперных полос на экране,

- после обеспечения параллельности интерференционных и реперных полос на экране на первом этапе, на втором этапе предварительно определяют точный абсолютный угол синхронизма, после чего настройку ПЧ на угол синхронизма относительно направления падающего на ПЧ лазерного излучения производят геодезически,

- о точности настройки ПЧ лазерного излучения в третью гармонику судят по совпадению углового положения максимума генерации гармоники с направлением настроенного на угол синхронизма падающего на ПЧ лазерного излучения.



 

Похожие патенты:

Изобретение относится к лазерной технике. Способ нелинейного внутрирезонаторного преобразования длины волны в лазере с продольной накачкой заключается в том, что для генерации на основной оптической частоте в лазере используют резонатор, конфигурация которого обеспечивает возможность одновременной генерации нескольких поперечных мод, вырожденных по фазовым набегам; располагают в непосредственной близости к одному из зеркал 1, 2 твердотельный активный элемент 3; размещают в резонаторе нелинейный элемент 4; фокусируют пучок 7 излучения оптической накачки в твердотельный активный элемент 3 вдоль оси резонатора.

Изобретение относится к лазерной технике. Лазерная система со стабилизацией частоты лазеров содержит установленные на плите два перестраиваемых диодных лазера с внешними резонаторами (ДЛВР1 и ДЛВР2), пучки излучения которых проходят через оптические изоляторы 1 и 2, соответственно полуволновые пластины и юстировочными поворотными зеркалами направляются следующим образом.

Изобретение относится к лазерной технике. Лазерная система со стабилизацией частоты лазеров содержит установленные на плите два перестраиваемых диодных лазера с внешними резонаторами (ДЛВР1 и ДЛВР2), пучки излучения которых проходят через оптические изоляторы 1 и 2, соответственно полуволновые пластины и юстировочными поворотными зеркалами направляются следующим образом.

Изобретение относится к оптическим элементам для волоконных лазеров, в частности к насыщающимся поглотителям. Сутью изобретения является устройство для переключения режимов работы оптоволоконного лазера на основе управляемого насыщающегося поглотителя из углеродных нанотрубок, состоящее из подложки, на которой размещены электрод, противоэлектрод, отполированная до сердцевины часть оптоволокна, соединенная прямым контактом с электродом, выполненным в виде пленки из углеродных нанотрубок, при этом отполированная часть волокна, пленка и противоэлектрод соединены электрически между собой через ионную жидкость, и указанная пленка выполнена с возможностью изменения нелинейного поглощения на длине волны лазера при приложении разности потенциалов на электрод и противоэлектрод.

Изобретение относится к оптическим элементам для волоконных лазеров, в частности к насыщающимся поглотителям. Сутью изобретения является устройство для переключения режимов работы оптоволоконного лазера на основе управляемого насыщающегося поглотителя из углеродных нанотрубок, состоящее из подложки, на которой размещены электрод, противоэлектрод, отполированная до сердцевины часть оптоволокна, соединенная прямым контактом с электродом, выполненным в виде пленки из углеродных нанотрубок, при этом отполированная часть волокна, пленка и противоэлектрод соединены электрически между собой через ионную жидкость, и указанная пленка выполнена с возможностью изменения нелинейного поглощения на длине волны лазера при приложении разности потенциалов на электрод и противоэлектрод.

Изобретение относится к лазерной системе с многолучевым выходным излучением (варианты) и способу сварки заготовок. Система представляет мультиволоконную лазерную систему, подающую выходное излучение по меньшей мере по трем волокнам, расположенным по окружности или же выходное излучение по меньшей мере четырех отдельных лазеров из одного рабочего кабеля.

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее диаметра.

Изобретение относится к области оптического приборостроения и может быть использовано в приборостроении, медицине и других областях науки и техники, где возникает необходимость непрерывного и плавного изменения положения перетяжки лазерного гауссова пучка при обеспечении постоянства ее диаметра.

Техническое решение относится к области нелинейной оптики и квантовой электроники. Способ стабилизации и перестройки длин волн однофотонных состояний на основе спонтанного параметрического рассеяния реализуется устройством, состоящим из оптически связанных и последовательно расположенных нелинейно-оптического элемента, помещенного одновременно в термостатирующее устройство и в источник внешнего электрического поля; системы отсекающих интерференционных фильтров, для отсечения излучения накачки; устройства, разделяющего поток фотонов; дисперсионного элемента; счетчика фотонов.

Техническое решение относится к области нелинейной оптики и квантовой электроники. Способ стабилизации и перестройки длин волн однофотонных состояний на основе спонтанного параметрического рассеяния реализуется устройством, состоящим из оптически связанных и последовательно расположенных нелинейно-оптического элемента, помещенного одновременно в термостатирующее устройство и в источник внешнего электрического поля; системы отсекающих интерференционных фильтров, для отсечения излучения накачки; устройства, разделяющего поток фотонов; дисперсионного элемента; счетчика фотонов.

Перестраиваемый оптический формирователь содержит корпус, оптические вход и выход и перестраиваемый формирователь расходимости пучка для ввода расходящегося лазерного пучка от источника с гауссовым профилем интенсивности излучения и вывода этого пучка к оптическому преобразователю интенсивности, содержащему цилиндрическую линзу и бипризму Френеля, за которым в каустике формируется по существу плоский участок перетяжки пучка, вытянутый в поперечном направлении к оптической оси за счет наличия в формирователе расходимости пучка подвижной в направлении его оптической оси положительной линзы.
Наверх